基于改進(jìn)花朵授粉算法的測試數(shù)據(jù)自動生成研究
[Abstract]:As the core factor in software testing, test data generation efficiency directly affects the effect of software testing. In this paper, the automatic generation method of test data is studied. As a new intelligent algorithm with good optimization ability, flower pollination algorithm has been successfully applied to various multi-objective optimization problems because of its simple parameters and easy implementation. This paper studies the application of this algorithm in the field of automatic generation of test data. Firstly, a series of improvement measures are put forward in view of its defects, and then the superiority of the improved algorithm in automatic generation of test data is verified by a large number of experiments. The contents and innovations of this paper mainly include the following aspects: (1) aiming at the defects of the basic flower pollination algorithm, the search speed is slow, the searching accuracy is not high and the local extremum is easy to fall into in the middle and late period. An adaptive hybrid flower pollination algorithm is proposed by improving the basic flower pollination algorithm by adjusting the parameters of the algorithm and introducing other intelligent algorithms into the hybrid algorithm. Firstly, the particle swarm optimization algorithm is introduced. Based on the advantages of high convergence accuracy and high speed in the initial stage of searching, a group of better quality solutions are obtained as the initial solution of the flower pollination algorithm to continue the iterative optimization operation. Secondly, a security function is proposed to reflect the discrete degree of the population. Finally, an adaptive mechanism is adopted to update the solution. The adaptive mechanism consists of two parts: adaptive Cauchy mutation and adaptive step size factor. According to the size of the population dispersion and the location of the solution, the adaptive search is carried out adaptively. In order to improve the ability of optimization. (2) the theoretical basis of basic flower pollination algorithm applied to test data generation is analyzed. On this basis, we study how to apply the adaptive hybrid flower pollination algorithm to the automatic generation of test data, and establish a test data generation model based on adaptive hybrid flower pollination algorithm. At the same time, an improved fitness function construction method is proposed to assign the corresponding weight parameter values to each branch according to the difficulty and ease of each branch, so as to reflect the coverage of each branch more accurately. In order to further improve the efficiency of test data generation. (3) finally, the feasibility and efficiency of adaptive hybrid flower pollination algorithm in automatic generation of test data are verified. Four typical test programs with different degrees of complexity are selected to generate test data automatically with the help of MATLAB platform. Compared with the other two intelligent algorithms that have been applied in the field of automatic generation of test data, the average time consumption is obtained. The average iteration times and the average branch coverage ratio were compared and analyzed.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP311.53;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖輝輝;萬常選;段艷明;;一種基于復(fù)合形法的花朵授粉算法[J];小型微型計(jì)算機(jī)系統(tǒng);2015年06期
2 肖輝輝;萬常選;段艷明;;一種改進(jìn)的新型元啟發(fā)式花朵授粉算法[J];計(jì)算機(jī)應(yīng)用研究;2016年01期
3 肖輝輝;萬常選;段艷明;鐘青;;基于模擬退火的花朵授粉優(yōu)化算法[J];計(jì)算機(jī)應(yīng)用;2015年04期
4 邵楠;周雁舟;惠文濤;嚴(yán)亞偉;;基于自適應(yīng)變異粒子群優(yōu)化算法的測試數(shù)據(jù)生成[J];計(jì)算機(jī)應(yīng)用研究;2015年03期
5 毛澄映;喻新欣;薛云志;;基于粒子群優(yōu)化的測試數(shù)據(jù)生成及其實(shí)證分析[J];計(jì)算機(jī)研究與發(fā)展;2014年04期
6 毛汝君;徐蔚鴻;逯燕玲;;基于粒子群-蟻群混合算法的軟件測試數(shù)據(jù)生成方法研究[J];硅谷;2013年01期
7 于博;姜淑娟;張艷梅;;基于復(fù)雜系統(tǒng)遺傳算法的多路徑覆蓋測試用例生成方法[J];計(jì)算機(jī)科學(xué);2012年04期
8 周綺;姜淑娟;趙雪峰;;改進(jìn)的量子遺傳算法及其在測試數(shù)據(jù)生成中的應(yīng)用[J];計(jì)算機(jī)應(yīng)用;2012年02期
9 田甜;毛明志;;基于DWSPSO的軟件測試數(shù)據(jù)自動生成[J];計(jì)算機(jī)工程與設(shè)計(jì);2011年06期
10 曹曉燕;邵定宏;;基于混合遺傳算法的測試數(shù)據(jù)自動生成研究[J];計(jì)算機(jī)工程與設(shè)計(jì);2010年21期
相關(guān)碩士學(xué)位論文 前6條
1 戴玉倩;基于混合動態(tài)粒子群算法的軟件測試數(shù)據(jù)自動生成研究[D];江西理工大學(xué);2015年
2 劉樹榮;基于分層遺傳算法的測試數(shù)據(jù)自動生成方法研究[D];北京理工大學(xué);2015年
3 彭葉蘋;基于遺傳算法的測試數(shù)據(jù)自動生成方法研究[D];廣東工業(yè)大學(xué);2013年
4 白凱;基于遺傳算法的測試數(shù)據(jù)自動生成技術(shù)的應(yīng)用研究[D];太原理工大學(xué);2010年
5 王暉;基于柯西變異的混合粒子群算法研究[D];中國地質(zhì)大學(xué);2008年
6 毛穎;測試用例自動生成系統(tǒng)研究與實(shí)現(xiàn)[D];電子科技大學(xué);2007年
,本文編號:2299961
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2299961.html