基于位置—加速度反饋的廣義二階系統(tǒng)特征結(jié)構(gòu)配置問(wèn)題研究
[Abstract]:Compared with normal systems, singular systems are more general in form and wider in scope of application. Some achievements have been made in the study of singular systems, such as aerospace control, vibration control, The control problem of robot can be described by the control and design of the second order dynamic system. Therefore, the generalized second order dynamical system is chosen as the research object in this paper. With the demand of high precision in practical engineering, the innovation of traditional feature structure configuration is becoming a research hotspot. In the design of the controller of generalized second-order dynamical system, the closed-loop system can have the desired characteristics by optimizing the robust performance index. In this paper, the feedback control of generalized second-order system is carried out by the parameterized method of eigenstructure collocation, which is verified in mass-spring-damping system, and the response characteristic of the system is improved. The main problems discussed in this paper are as follows: 1) according to the characteristics of the singular system, the form of the control law is set in advance, that is, the position-acceleration feedback, and the feedback is used to eliminate the influence of the pulse. The parameterized form of the feedback controller is derived by combining the right co-prime decomposition. 2) in order to keep the original characteristics of the system disturbed as much as possible, the corresponding robust performance index is proposed to improve the robustness of the closed-loop system. In order to solve the above problems, the innovative work is as follows: first, based on position-acceleration feedback, the eigenstructure configuration problem of generalized second-order dynamical systems is solved. When the position-acceleration feedback control law is applied to the singular system, the dynamic order of the system can be changed and the impulse response of the singular system can be eliminated. For some types of systems, especially for large flexible structures, the dynamic response of the system measured by accelerometers is more accurate than that of position and velocity sensors. Secondly, the eigenvalues of the closed-loop system are allowed to be unknown, and the parameterization method of the eigenstructure is proposed based on the right co-prime decomposition and the elementary transformation of the matrix. The parametric expressions of eigenvector matrix and feedback gain controller for generalized second-order dynamical systems are derived. The degree of freedom provided by the parameterized expressions can be used in the robust design of the system. The algorithm has the advantages of simple and effective, low computational complexity and high accuracy. It can be used in the design of the controller of generalized second-order dynamical system more effectively. Thirdly, a new performance index for measuring the sensitivity of singular second order system is proposed to improve the robustness of the system. The eigenvalue of the closed-loop system is not sensitive to the parameter perturbation while the eigenvalue is in the specified region. Different from the past, the performance index also optimizes the position and acceleration feedback gain matrix to prevent the system from being substituted into the control input of the large value.
【學(xué)位授予單位】:東北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 仲志丹;郭苗苗;馬利丹;趙斐;;油井抽油機(jī)位移加速度信號(hào)優(yōu)化控制[J];計(jì)算機(jī)仿真;2016年08期
2 夏恩惠;;有限階正則廣義分布參數(shù)系統(tǒng)的擾動(dòng)脈沖能觀(guān)性[J];新型工業(yè)化;2016年07期
3 林旭;羅志才;;位移和加速度融合的自適應(yīng)多速率Kalman濾波方法[J];地球物理學(xué)報(bào);2016年05期
4 顧大可;張家琦;李春來(lái);;矩陣二階線(xiàn)性系統(tǒng)的魯棒特征結(jié)構(gòu)配置[J];控制工程;2016年03期
5 嚴(yán)俠;王玨;牛寶良;胡勇;;一種改善液壓激振系統(tǒng)高頻特性的位移加速度混合控制技術(shù)[J];機(jī)床與液壓;2015年20期
6 李晨曦;俞孟蕻;楊金節(jié);;應(yīng)用加速度反饋的船舶動(dòng)力定位系統(tǒng)研究[J];科學(xué)技術(shù)與工程;2014年08期
7 顧大可;段廣仁;;矩陣二階線(xiàn)性系統(tǒng)的魯棒漸近跟蹤[J];信息與控制;2013年02期
8 王國(guó)勝;武云麗;段廣仁;;基于特征結(jié)構(gòu)配置的二階線(xiàn)性系統(tǒng)魯棒容錯(cuò)控制設(shè)計(jì)[J];控制與決策;2013年03期
9 孔德杰;戴明;程志峰;沈宏海;蓋竹秋;王國(guó)華;毛大鵬;;動(dòng)基座光電穩(wěn)定平臺(tái)伺服系統(tǒng)中加速度反饋的實(shí)現(xiàn)[J];光學(xué)精密工程;2012年08期
10 安方;陳衛(wèi)東;;時(shí)滯加速度反饋的振動(dòng)主動(dòng)控制方法研究[J];振動(dòng)工程學(xué)報(bào);2012年04期
相關(guān)博士學(xué)位論文 前5條
1 魏菊梅;幾類(lèi)廣義系統(tǒng)的穩(wěn)定性分析與控制[D];鄭州大學(xué);2013年
2 任俊超;導(dǎo)數(shù)項(xiàng)矩陣具有不確定性的廣義系統(tǒng)導(dǎo)數(shù)反饋控制[D];東北大學(xué);2011年
3 吳愛(ài)國(guó);廣義線(xiàn)性系統(tǒng)的脈沖消除與觀(guān)測(cè)器設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2008年
4 李師廣;線(xiàn)性系統(tǒng)參數(shù)特征結(jié)構(gòu)配置與振動(dòng)主動(dòng)控制[D];上海交通大學(xué);2007年
5 張彪;廣義線(xiàn)性系統(tǒng)的參數(shù)化控制設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前7條
1 劉賀;廣義線(xiàn)性系統(tǒng)的魯棒輸出反饋特征結(jié)構(gòu)配置[D];哈爾濱工業(yè)大學(xué);2016年
2 臧金鑫;基于位置—加速度反饋的二階系統(tǒng)特征結(jié)構(gòu)配置問(wèn)題研究[D];東北電力大學(xué);2016年
3 徐洋;廣義系統(tǒng)基于動(dòng)態(tài)補(bǔ)償器的極點(diǎn)配置[D];哈爾濱工業(yè)大學(xué);2014年
4 付冬;廣義線(xiàn)性系統(tǒng)的漸近跟蹤控制[D];哈爾濱工業(yè)大學(xué);2013年
5 邢雙云;廣義系統(tǒng)的比例導(dǎo)數(shù)輸出反饋控制[D];東北大學(xué);2008年
6 徐文建;二階系統(tǒng)的數(shù)字PID校正虛擬儀器的設(shè)計(jì)與實(shí)現(xiàn)[D];天津大學(xué);2007年
7 彭路峰;廣義系統(tǒng)的極點(diǎn)配置及輸出反饋鎮(zhèn)定[D];天津大學(xué);2007年
,本文編號(hào):2298308
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2298308.html