外部種群完全反饋的元胞差分算法設計及應用
發(fā)布時間:2018-10-24 23:01
【摘要】:針對傳統(tǒng)進化算法在求解多目標優(yōu)化問題時存在多樣性和收斂性不佳的問題,提出一種外部種群完全反饋的元胞差分算法。對標準元胞差分算法進行改進,在每一代進化之后,根據(jù)秩與k最近鄰距離對外部種群進行修剪,并將修剪后的整個外部種群隨機分配到二維網(wǎng)狀結構,在原有變異操作中引入新的擾動來避免算法陷入局部最優(yōu)。通過對6個基準函數(shù)進行測試表明,新算法相對于其他3種典型算法具有更好的前端覆蓋性,新的變異方式能提高算法跳出局部最優(yōu)解的能力。通過工程實例驗證了所提算法的可行性與有效性。
[Abstract]:Aiming at the diversity and poor convergence of traditional evolutionary algorithm in solving multi-objective optimization problems, a cellular difference algorithm with complete feedback of external population is proposed. The standard cellular difference algorithm is improved. After each generation evolves, the external population is pruned according to the distance between rank and k nearest neighbor, and the whole external population is randomly assigned to the two-dimensional mesh structure. A new disturbance is introduced into the original mutation operation to avoid the algorithm falling into local optimum. The test of six benchmark functions shows that the new algorithm has better front-end coverage than the other three typical algorithms, and the new mutation method can improve the ability of the algorithm to jump out of the local optimal solution. The feasibility and effectiveness of the proposed algorithm are verified by an engineering example.
【作者單位】: 浙江工業(yè)大學機械工程學院;
【基金】:浙江省自然科學基金資助項目(LY16G010013) 國家自然科學基金資助項目(71371170,71301148) 國家863計劃資助項目(2015AA043002)~~
【分類號】:TP18
本文編號:2292830
[Abstract]:Aiming at the diversity and poor convergence of traditional evolutionary algorithm in solving multi-objective optimization problems, a cellular difference algorithm with complete feedback of external population is proposed. The standard cellular difference algorithm is improved. After each generation evolves, the external population is pruned according to the distance between rank and k nearest neighbor, and the whole external population is randomly assigned to the two-dimensional mesh structure. A new disturbance is introduced into the original mutation operation to avoid the algorithm falling into local optimum. The test of six benchmark functions shows that the new algorithm has better front-end coverage than the other three typical algorithms, and the new mutation method can improve the ability of the algorithm to jump out of the local optimal solution. The feasibility and effectiveness of the proposed algorithm are verified by an engineering example.
【作者單位】: 浙江工業(yè)大學機械工程學院;
【基金】:浙江省自然科學基金資助項目(LY16G010013) 國家自然科學基金資助項目(71371170,71301148) 國家863計劃資助項目(2015AA043002)~~
【分類號】:TP18
【相似文獻】
相關期刊論文 前3條
1 肖剛;謝紅;;基于二進制差分算法的HWSN目標覆蓋研究[J];應用科技;2013年06期
2 彭奇;李偉華;;犧牲層腐蝕改進模型與模擬研究[J];傳感技術學報;2008年02期
3 徐郡,儲方杰;基于BP網(wǎng)時間差分算法的設計與應用[J];系統(tǒng)仿真學報;2003年10期
相關碩士學位論文 前1條
1 張?zhí)焱?進化差分算法在聯(lián)合補貨模型中的應用[D];哈爾濱理工大學;2017年
,本文編號:2292830
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2292830.html
最近更新
教材專著