天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

基于機器學習的安卓惡意應用檢測方法研究

發(fā)布時間:2018-10-18 18:42
【摘要】:隨著智能手機的出現(xiàn)以及移動互聯(lián)網(wǎng)的快速發(fā)展,用戶連接網(wǎng)絡(luò)的方式也在逐漸發(fā)生變化,由PC端向移動端轉(zhuǎn)移,F(xiàn)如今智能手機與傳統(tǒng)PC相比,已不僅僅是簡單的通信工具,PC端的很多功能都在移動端實現(xiàn)。Android手機系統(tǒng)是目前市場上用戶最多的手機操作系統(tǒng),因此大量的用戶和開發(fā)人員關(guān)注安卓應用市場。同時,惡意代碼的開發(fā)者也將目光轉(zhuǎn)入這一市場,用戶的手機安全受到極大威脅。面對Android應用市場存在的大量惡意應用,如何高效的檢測惡意應用是個亟待解決的問題。針對以上問題,本論文旨在研究基于機器學習的安卓惡意應用檢測方法,主要研究重點包括:(1)對安卓惡意應用檢測的研究現(xiàn)狀和成果以及安卓系統(tǒng)架構(gòu)進行了深入的研究,分析了安卓系統(tǒng)基于Linux內(nèi)核的安全機制以及安卓系統(tǒng)特有的安全機制,如沙盒機制和權(quán)限機制等。(2)分析了惡意應用的攻擊方式以及惡意代碼植入方式,在此基礎(chǔ)上對Android應用的反編譯文件進行了深入解析,并對論文中所使用的機器學習分類算法的原理進行了分析。(3)設(shè)計了基于機器學習的安卓惡意應用檢測的方案,針對惡意應用特征提出使用N-gram Opcode特征進行機器學習的惡意應用檢測方案,實驗結(jié)果表明使用Dalvik指令分為24類的規(guī)則和3-gram生成的3-gram Opcode特征具有最好的性能。隨后依據(jù)3-gram Opcode特征結(jié)合API特征和Permission特征,對特征集合和分類算法對分類器的性能影響進行了多次實驗,大量的實驗表明使用API特征、Permission特征與3-gram Opcode特征的組合特征集合與隨機森林算法訓練得到的分類器有著較好的性能,在誤判率為5.3%的情況下達到了 94%的檢測準確率,平均預測時間為10.06s。若是使用API特征與Permission特征的組合特征集合和隨機森林算法訓練的分類器,在檢測準確率94.1%和誤判率6.5%的情況下,平均預測時間為7.5s。
[Abstract]:With the emergence of smart phones and the rapid development of mobile Internet, the way users connect to the network is gradually changing from PC to mobile. Nowadays, compared with the traditional PC, the smartphone is not only a simple communication tool, but also many functions of the PC end are implemented on the mobile side. Android mobile phone system is the most popular mobile operating system in the market. So a lot of users and developers focus on the Android app market. At the same time, malicious code developers turn to this market, users' mobile phone security is greatly threatened. In the face of a large number of malicious applications in Android application market, how to detect malicious applications efficiently is an urgent problem to be solved. Aiming at the above problems, this thesis aims to study the malware detection methods of Android based on machine learning. The main research focuses are as follows: (1) the research status and achievements of Android malicious application detection and the Android system architecture are studied deeply. This paper analyzes the security mechanism of Android system based on Linux kernel and the special security mechanism of Android system, such as sandboxie mechanism and permission mechanism. (2) the attack mode of malicious application and the way of malicious code implantation are analyzed. On this basis, the decompilation file of Android application is deeply analyzed, and the principle of machine learning classification algorithm used in this paper is analyzed. (3) the scheme of malware application detection based on machine learning is designed. A malicious application detection scheme using N-gram Opcode features for machine learning is proposed for malicious application features. The experimental results show that the Dalvik instruction is divided into 24 kinds of rules and the 3-gram Opcode features generated by 3-gram have the best performance. Then, according to the 3-gram Opcode features combined with API features and Permission features, the effects of feature sets and classification algorithms on the performance of the classifier are tested many times. A large number of experiments show that the classifier trained by API feature, Permission feature and 3-gram Opcode feature combined with random forest algorithm has good performance, and the detection accuracy is 94% when the error rate is 5.3%. The average predicted time was 10.06 s. If the combined feature set of API feature and Permission feature and the classifier trained by stochastic forest algorithm are used, the average prediction time is 7.5 s when the detection accuracy is 94.1% and the error rate is 6.5%.
【學位授予單位】:北京交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP181;TP309

【參考文獻】

相關(guān)期刊論文 前10條

1 桓自強;倪宏;胡琳琳;郭志川;;基于Android權(quán)限機制的應用安全檢測方法[J];計算機工程與設(shè)計;2016年01期

2 謝妞妞;;決策樹算法綜述[J];軟件導刊;2015年11期

3 王鵬;;安卓平臺下惡意軟件的檢測研究[J];中國新通信;2015年08期

4 李挺;董航;袁春陽;杜躍進;徐國愛;;基于Dalvik指令的Android惡意代碼特征描述及驗證[J];計算機研究與發(fā)展;2014年07期

5 張玉清;王凱;楊歡;方U喚,

本文編號:2280035


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2280035.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4875e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
欧美小黄片在线一级观看| 久久精品中文字幕人妻中文| 青青操成人免费在线视频| 亚洲综合色在线视频香蕉视频| 欧美日韩精品人妻二区三区| 人妻巨大乳一二三区麻豆| 欧美日韩在线观看自拍| 麻豆视传媒短视频在线看| 最新日韩精品一推荐日韩精品| 亚洲夫妻性生活免费视频| 欧美日本道一区二区三区| 欧美亚洲国产日韩一区二区| 在线观看视频成人午夜| 中国日韩一级黄色大片| 开心五月激情综合婷婷色| 国产精品一区二区不卡中文| 免费特黄欧美亚洲黄片| 亚洲伦片免费偷拍一区| 亚洲国产天堂av成人在线播放| 神马午夜福利一区二区| 99精品人妻少妇一区二区人人妻| 成人免费观看视频免费| 免费啪视频免费欧美亚洲| 自拍偷拍福利视频在线观看| 国产成人精品在线播放| 出差被公高潮久久中文字幕| 国自产拍偷拍福利精品图片| 亚洲av秘片一区二区三区| 中国一区二区三区不卡| 精品日韩欧美一区久久| 国内外免费在线激情视频| 丁香六月啪啪激情综合区| 国内胖女人做爰视频有没有| 亚洲精品美女三级完整版视频| 丰满人妻熟妇乱又伦精另类视频 | 国产精品第一香蕉视频| 日本不卡片一区二区三区| 日韩精品中文字幕在线视频| 国产一级片内射视频免费播放| 最新午夜福利视频偷拍| 麻豆在线观看一区二区|