依概率收斂的改進(jìn)粒子群優(yōu)化算法
[Abstract]:Particle swarm optimization (PSO) is a stochastic optimization algorithm, but it does not converge to the global optimal solution according to probability 1. Therefore, a new probabilistic particle swarm optimization algorithm is proposed. In this algorithm, two mutation operators with the ability of exploration and development are first introduced, and the two operators are applied to the best position of particles according to certain probability, and then it is proved that the algorithm converges to 蔚 -optimal solution according to probability 1. Finally, the algorithm is applied to 13 typical test functions, and compared with other particle swarm optimization algorithms, the numerical results show that the proposed algorithm can improve the accuracy and convergence speed.
【作者單位】: 渤海大學(xué)數(shù)理學(xué)院;
【基金】:國家自然科學(xué)基金項目(11371071) 遼寧省教育廳科學(xué)研究項目(L2013426)
【分類號】:TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 戴冬雪,王祁,阮永順,王曉超;基于混沌思想的粒子群優(yōu)化算法及其應(yīng)用[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2005年10期
2 李紹軍;王惠;錢鋒;;基于模式優(yōu)選思想改進(jìn)的粒子群優(yōu)化算法[J];控制與決策;2006年10期
3 蘇俊霞;蔚承建;;基于粒子群優(yōu)化算法的自動機(jī)制設(shè)計[J];計算機(jī)工程與應(yīng)用;2007年04期
4 何妮;吳燕仙;;粒子群優(yōu)化算法的研究[J];科技信息(科學(xué)教研);2008年06期
5 賀毅朝;王熙照;曲文龍;;一種具有雙重進(jìn)化空間的擴(kuò)展粒子群優(yōu)化算法[J];小型微型計算機(jī)系統(tǒng);2008年08期
6 王正帥;鄧喀中;;基于文化框架的隨機(jī)粒子群優(yōu)化算法[J];計算機(jī)科學(xué);2012年06期
7 馮紀(jì)強(qiáng);溫雅;;粒子群優(yōu)化的模糊特征[J];現(xiàn)代電子技術(shù);2012年23期
8 田亞菲;張范勇;閻石;;基于粒子群優(yōu)化的細(xì)菌覓食優(yōu)化算法[J];控制工程;2012年06期
9 祁超;張曦;劉煥杰;張薈萃;;云環(huán)境下多群體協(xié)作粒子群優(yōu)化框架的研究[J];科技創(chuàng)新與應(yīng)用;2013年36期
10 高海兵;周馳;高亮;;廣義粒子群優(yōu)化模型[J];計算機(jī)學(xué)報;2005年12期
相關(guān)會議論文 前9條
1 徐俊杰;忻展紅;;基于增強(qiáng)型參考位置的粒子群優(yōu)化模型[A];’2004系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會論文集[C];2004年
2 王亞;于永光;耿玲玲;;一類改進(jìn)的自適應(yīng)粒子群優(yōu)化算法對混沌系統(tǒng)未知參數(shù)的估計[A];中國力學(xué)大會——2013論文摘要集[C];2013年
3 王光輝;陳杰;潘峰;;多種群協(xié)同粒子群優(yōu)化算法求解動態(tài)環(huán)境優(yōu)化問題[A];第二十七屆中國控制會議論文集[C];2008年
4 楊雅偉;侍洪波;;量子粒子群優(yōu)化算法及其應(yīng)用研究[A];中國儀器儀表學(xué)會第九屆青年學(xué)術(shù)會議論文集[C];2007年
5 趙建玉;賈磊;陳月輝;張勇;;基于粒子群優(yōu)化的信號交叉口交通流預(yù)測模型[A];第二十六屆中國控制會議論文集[C];2007年
6 趙秋玲;周雅莉;張奇志;;基于粒子群優(yōu)化的結(jié)構(gòu)振動分布式反饋控制[A];2005年中國智能自動化會議論文集[C];2005年
7 肖龍光;丁曉東;謝集平;;粒子群優(yōu)化算法的改進(jìn)[A];第二十三屆中國控制會議論文集(上冊)[C];2004年
8 龔?fù)?曹秀英;;基于粒子群優(yōu)化的偽距定位算法研究[A];第二屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會電子文集[C];2011年
9 錢偉懿;王艷杰;;帶自適應(yīng)壓縮因子粒子群優(yōu)化算法[A];中國運籌學(xué)會模糊信息與模糊工程分會第五屆學(xué)術(shù)年會論文集[C];2010年
相關(guān)博士學(xué)位論文 前10條
1 劉昊;多樣性增強(qiáng)的粒子群優(yōu)化算法及其應(yīng)用研究[D];北京理工大學(xué);2015年
2 姜毅;動態(tài)環(huán)境下粒子群優(yōu)化算法的研究[D];武漢大學(xué);2013年
3 Shafiullah Khan;粒子群優(yōu)化算法及其在電磁設(shè)計中的應(yīng)用[D];浙江大學(xué);2017年
4 熊勇;粒子群優(yōu)化算法的行為分析與應(yīng)用實例[D];浙江大學(xué);2005年
5 唐賢倫;混沌粒子群優(yōu)化算法理論及應(yīng)用研究[D];重慶大學(xué);2007年
6 唐賢倫;混沌粒子群優(yōu)化算法理論及應(yīng)用[D];重慶大學(xué);2007年
7 徐慧;粒子群優(yōu)化算法改進(jìn)及其在煤層氣產(chǎn)能預(yù)測中的應(yīng)用研究[D];中國礦業(yè)大學(xué);2013年
8 劉逸;粒子群優(yōu)化算法的改進(jìn)及應(yīng)用研究[D];西安電子科技大學(xué);2013年
9 高芳;智能粒子群優(yōu)化算法研究[D];哈爾濱工業(yè)大學(xué);2008年
10 張麗平;粒子群優(yōu)化算法的理論及實踐[D];浙江大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 陳卓;粒子群優(yōu)化算法的改進(jìn)及在油藏數(shù)值模擬中的應(yīng)用[D];北京建筑大學(xué);2015年
2 白云;基于粒子群優(yōu)化算法的復(fù)雜網(wǎng)絡(luò)社區(qū)挖掘[D];西北農(nóng)林科技大學(xué);2015年
3 楊艷華;基于粒子群優(yōu)化支持向量機(jī)的網(wǎng)絡(luò)態(tài)勢預(yù)測模型研究[D];蘭州大學(xué);2015年
4 鄭博;基于快速排序的多目標(biāo)粒子群優(yōu)化算法的研究及應(yīng)用[D];鄭州大學(xué);2015年
5 米永強(qiáng);非線性規(guī)劃問題的混合粒子群優(yōu)化算法研究[D];寧夏大學(xué);2015年
6 李建美;基于自適應(yīng)變異與文化框架的混沌粒子群優(yōu)化算法[D];陜西師范大學(xué);2015年
7 劉星;基于粒子群優(yōu)化算法的特征選擇方法研究[D];南京大學(xué);2015年
8 牛旭;動態(tài)粒子群優(yōu)化算法及其應(yīng)用[D];西安電子科技大學(xué);2014年
9 葉華;粒子群優(yōu)化算法研究[D];西安電子科技大學(xué);2014年
10 楊青河;基于優(yōu)化控制思想的粒子群優(yōu)化算法改進(jìn)研究[D];東北大學(xué);2013年
,本文編號:2274859
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2274859.html