基于多智能體理論的汽車底盤協(xié)調(diào)控制方法研究
[Abstract]:With the high development of science and technology civilization of human society and the quickening of life rhythm, the era of automobile as a walking tool is coming gradually. In order to meet the requirements of comfortable ride, convenient operation, safety and reliability and the continuous pursuit of perfection by human beings, automobile products have developed from the initial complete mechanical structure to the present integration of machinery, electronics and materials. The application stage of multi-disciplinary and new achievements in science and technology, such as control, is developing towards the direction of multi-objective synthesis and intelligent control, and the function is more and more powerful and the reliability is getting higher and higher. Among them, suspension, braking, steering and other chassis coordination control systems, which are closely related to vehicle ride comfort, handling stability and driving safety, have become a hot spot in the field of automotive engineering. In this paper, according to the dynamic principle of automobile, the mathematical models of automobile chassis agents, including braking Agent model, steering Agent model and 7-degree-of-freedom suspension Agent model, are established under the environment of MATLAB/Simulink and the relevant data collected by multi-sensor. Then, the reinforcement learning algorithm of RBF neural network is applied to the coordinated control of chassis multi-agent. The cerebellar neural model (CMAC) algorithm is used to reduce and generalize a large number of continuous data provided by suspension Agent, steering Agent and brake Agent as the state input of reinforcement learning algorithm. According to the performance index of each agent in chassis, the enhancement signal is determined, and the action network and evaluation network of reinforcement learning algorithm are trained by RBF neural network to realize the best performance index of local agent. Secondly, fuzzy control method is used to determine the weight of performance index in reinforcement learning. According to the data under different working conditions, the weight of each agent performance index is determined according to the data under different working conditions, and the design of the reinforcement learning control strategy of multi-agent chassis is completed, and the comprehensive performance of the vehicle is improved. Finally, under the MATLAB/Simulink simulation environment, the hardware of the xPC Target real-time simulation system is built on the ring test rig, and the designed multi-agent reinforcement learning control algorithm is used to solve the braking condition of the vehicle. The simulation experiments on instantaneous steering conditions and complex steering braking conditions are carried out, and the results are analyzed in detail. It is verified that the multi-agent coordinated control algorithm proposed in this paper can improve the vehicle comfort. Effectiveness in terms of safety and ride comfort.
【學(xué)位授予單位】:長春工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U463.1;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 丁衍;魏晨;鮑樹語;;基于一致性算法的時延多無人機(jī)編隊分散化控制[J];計算機(jī)應(yīng)用;2014年S1期
2 陳無畏;王檀彬;焦俊;汪明磊;王家恩;;基于信息融合的多智能體混合體系智能車輛導(dǎo)航[J];農(nóng)業(yè)機(jī)械學(xué)報;2011年06期
3 謝光強(qiáng);章云;;多智能體系統(tǒng)協(xié)調(diào)控制一致性問題研究綜述[J];計算機(jī)應(yīng)用研究;2011年06期
4 牛禮民;趙又群;馮能蓮;;汽車底盤協(xié)同控制的多智能體技術(shù)[J];機(jī)械科學(xué)與技術(shù);2010年12期
5 肖正;馬勝祥;張世永;;一種基于Q學(xué)習(xí)的分布式多任務(wù)流調(diào)度算法[J];小型微型計算機(jī)系統(tǒng);2010年04期
6 黃安華;卜憲衛(wèi);;淺談汽車的轉(zhuǎn)向系統(tǒng)[J];農(nóng)業(yè)裝備與車輛工程;2010年01期
7 陳無畏;初長寶;;基于分層式協(xié)調(diào)控制的汽車電動助力轉(zhuǎn)向與防抱制動系統(tǒng)仿真[J];機(jī)械工程學(xué)報;2009年07期
8 劉翔宇;陳無畏;;基于DYC和ABS分層協(xié)調(diào)控制策略的ESP仿真[J];農(nóng)業(yè)機(jī)械學(xué)報;2009年04期
9 陳龍;陳柏林;趙景波;牛禮民;江浩斌;;轉(zhuǎn)向工況下汽車半主動懸架模糊PID控制[J];汽車技術(shù);2008年09期
10 牛禮民;陳龍;江浩斌;趙又群;;多智能體理論在車輛底盤集成控制中的應(yīng)用[J];汽車技術(shù);2008年08期
相關(guān)博士學(xué)位論文 前3條
1 趙樹恩;基于多模型智能遞階控制的車輛底盤集成控制研究[D];重慶大學(xué);2010年
2 趙偉;汽車動力學(xué)穩(wěn)定性橫擺力矩和主動轉(zhuǎn)向聯(lián)合控制策略的仿真研究[D];長安大學(xué);2008年
3 黃炳強(qiáng);強(qiáng)化學(xué)習(xí)方法及其應(yīng)用研究[D];上海交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 唐驥宇;多智能體系統(tǒng)一致性問題研究[D];長安大學(xué);2014年
2 房宏威;汽車主動懸架模糊神經(jīng)控制仿真研究[D];長安大學(xué);2014年
3 楊振輝;四輪驅(qū)動汽車直接橫擺力矩與主動懸架集成控制研究[D];重慶大學(xué);2014年
4 黃強(qiáng);基于人工勢場和虛擬領(lǐng)航者的多智能體協(xié)同控制研究[D];哈爾濱工業(yè)大學(xué);2013年
5 任雨;具有可變參數(shù)量化器的一階多智能體系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2013年
6 張何津;基于包含避碰控制的多智能體協(xié)同控制研究與實驗[D];上海交通大學(xué);2013年
7 仝旭珂;帶有分布時滯的群集穩(wěn)定性分析[D];鄭州大學(xué);2012年
8 陳柏林;車輛SAS與EPS集成系統(tǒng)的穩(wěn)定性分析及模糊PID控制研究[D];江蘇大學(xué);2009年
9 王霞;汽車防抱制動與主動前輪轉(zhuǎn)向系統(tǒng)協(xié)調(diào)控制研究[D];合肥工業(yè)大學(xué);2007年
10 邱宇航;協(xié)作協(xié)進(jìn)化算法應(yīng)用于多智能體協(xié)作的研究[D];浙江工業(yè)大學(xué);2005年
,本文編號:2273634
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2273634.html