基于機器學習的視頻序列中自動人數(shù)統(tǒng)計研究
[Abstract]:Intelligent video surveillance technology has increasingly become an important technical means of public security management. Automatic population statistics is one of the important contents of intelligent video surveillance. The research of this technology is of great significance for the realization of a safe society. Due to the large amount of information in the video, the existing methods fail to take both accuracy and real-time into account. Aiming at this problem, the main contents of this paper are as follows: aiming at the problem of poor tracking effect when the target moves faster, an improved multi-target tracking method is proposed. After the foreground target is extracted by background subtractive method, the target is predicted by Kalman, the result is used as the initial position of Mean-shift search, and the result is used as the observation value of Kalman correction stage. In addition, the occlusion factor is introduced to judge the occlusion of the target, and the adaptive processing of occlusion is realized. The experimental results show that the proposed method can effectively reduce the occurrence of loss and is robust to the targets moving faster in the scene, and the matching of the same target can be achieved in different frames. In view of the complexity of the operation process caused by the high dimension of human feature extracted, a multi-feature reduction method based on rough set is proposed. A series of representative target features are extracted, and then the features are reduced by rough set knowledge reduction. Experimental results show that the method can effectively reduce the recognition time and meet the real-time requirements in video processing. In addition, for the extracted pedestrian features, the population statistics method based on machine learning is studied, and the adaptive momentum factor is used to optimize the BP algorithm. The adaptive momentum factor is introduced to update the weights between layers. In order to complete the reverse propagation of the error. Experimental results show that the proposed method can effectively improve the instability of the BP algorithm caused by the improper value of the constant momentum factor and has a lower time complexity. The research method of automatic number statistics in video sequence can make full use of the information data in the surveillance video, realize the automatic detection and tracking of human body target, and grasp the accurate number of people entering and leaving. Therefore, it is of great significance for the management of public places and the prevention of crowd disasters to put an end to the safety hidden dangers which are easy to appear in high density crowd places.
【學位授予單位】:西安科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP181;TN948.6
【參考文獻】
相關期刊論文 前10條
1 蔡瑞初;謝偉浩;郝志峰;王麗娟;溫雯;;基于多尺度時間遞歸神經(jīng)網(wǎng)絡的人群異常檢測[J];軟件學報;2015年11期
2 於正強;潘峗;宦若虹;;一種結合幀差法和混合高斯的運動檢測算法[J];計算機應用與軟件;2015年04期
3 張旭;蔣建國;洪日昌;杜躍;;基于樸素貝葉斯K近鄰的快速圖像分類算法[J];北京航空航天大學學報;2015年02期
4 黃凱奇;陳曉棠;康運鋒;譚鐵牛;;智能視頻監(jiān)控技術綜述[J];計算機學報;2015年06期
5 王正友;;一種改進的基于SVM與Mean shift的目標跟蹤[J];計算機仿真;2014年06期
6 張偉麗;江春華;郝宗波;;基于改進的均值漂移和卡爾曼濾波的目標跟蹤算法[J];計算機應用與軟件;2014年05期
7 華媛蕾;劉萬軍;;改進混合高斯模型的運動目標檢測算法[J];計算機應用;2014年02期
8 趙健;張冬泉;;基于OpenCV的數(shù)字手勢識別算法[J];計算機應用;2013年S2期
9 黎萬義;王鵬;喬紅;;引入視覺注意機制的目標跟蹤方法綜述[J];自動化學報;2014年04期
10 袁國武;陳志強;龔健;徐丹;廖仁健;何俊遠;;一種結合光流法與三幀差分法的運動目標檢測算法[J];小型微型計算機系統(tǒng);2013年03期
相關碩士學位論文 前10條
1 趙玉丹;基于LBP的圖像紋理特征的提取及應用[D];西安郵電大學;2015年
2 朱志玲;智能視頻監(jiān)控中行人跟蹤技術研究[D];北京交通大學;2014年
3 趙明瀚;自適應的視頻人數(shù)識別系統(tǒng)研究[D];北京郵電大學;2014年
4 劉艷麗;基于神經(jīng)網(wǎng)絡的運動目標檢測與跟蹤算法的研究[D];安徽工程大學;2013年
5 湯石晨;基于光流法的視頻人數(shù)統(tǒng)計方法研究[D];華僑大學;2012年
6 吳培培;視頻監(jiān)控中的行人統(tǒng)計方法研究[D];華中科技大學;2012年
7 賴勇;出入口人數(shù)統(tǒng)計系統(tǒng)的設計與實現(xiàn)[D];電子科技大學;2010年
8 顧德軍;基于視頻圖像處理的人數(shù)自動統(tǒng)計技術研究[D];南京航空航天大學;2010年
9 郭文;基于粗集理論的知識約簡及其在風險識別中的應用[D];四川師范大學;2008年
10 徐昊;基于簡單固定背景圖像特征的人數(shù)統(tǒng)計[D];重慶大學;2007年
,本文編號:2260851
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2260851.html