六軸機(jī)器人仿真示教系統(tǒng)研究與實(shí)現(xiàn)
[Abstract]:With the more and more extensive application of robot, the working environment is becoming more and more complex. Teaching system plays an important role in the operation of robot. At present, the mainstream six-axis robots mostly rely on imports, and their teaching systems are closed and difficult to be redeveloped. At the same time, the research in the field of robot teaching system is relatively backward, and lack of skilled robot technical personnel. Therefore, a six-axis robot simulation and teaching system is developed in this paper, which is connected with the computer simulation platform to replace the traditional way of connecting with the robot. The system can provide robot operation exercises and can be used to further study the teaching system. Firstly, the kinematics of six-axis robot is studied. The kinematics model is established by using D-H representation, and the forward and inverse kinematics equations of six-axis robot are deduced and solved. The problem of selecting the optimal solution in the multi-group inverse solution is studied. Finally, the simulation is carried out by programming. Secondly, the application requirement of the six-axis robot teaching system is analyzed, and a new design scheme of the robot simulation teacher is put forward. The hardware design of the teacher is based on STM32, which has good compatibility and is easy to transplant. Then, the Ethernet communication circuit, keyboard circuit and touch screen communication circuit are analyzed and designed. The real-time operating system is introduced into the software design of the teacher, which ensures the stability and good openness of the program. The flow chart of main program, Ethernet communication program and keyboard reading program is also given. The teacher can connect with the computer simulation platform through Ethernet to realize the control of the 3D simulation robot. Based on the kinematics model of six-axis robot, VC and (Open GL) are used to build the 3D model of robot. The model files generated by Solid Works are imported into VC environment to ensure the accuracy of the model. This method makes up for the defects of Open GL in drawing complex graphics, such as heavy workload, low development efficiency and poor opening of Solid Works software programming interface, and greatly improves the development efficiency. Trajectory planning is an important part of robot motion control. In this paper, several polynomial interpolation programming methods in joint space are analyzed. The linear interpolation method of three-segment S-curve in Cartesian space is improved, and the five-segment S-curve programming method is adopted. It makes the running speed of the robot end more stable and verified by programming. Finally, the control flow of the robot teaching system is analyzed, and the functions of manual control and teaching reappearance are added to the 3D model of the robot on the computer simulation platform, so that the simulation teaching system can approach the actual application effect. The collision detection problem of the robot is studied to ensure the safe operation of the robot. The experimental results show that the 3D robot model in the simulation teaching system is accurate and running smoothly, and the function is normal. This method has certain openness and portability, on the basis of which the robot teaching system can be further studied, and a safe and convenient operation platform can be provided for operators.
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉昆;李世中;王寶祥;;基于UR機(jī)器人的直接示教系統(tǒng)研究[J];科學(xué)技術(shù)與工程;2015年28期
2 董輝;仲曉帆;黃勝;;一種六關(guān)節(jié)機(jī)器人關(guān)節(jié)空間軌跡規(guī)劃方法[J];浙江工業(yè)大學(xué)學(xué)報(bào);2015年03期
3 楊志龍;付永領(lǐng);;弧焊機(jī)器人離線(xiàn)編程系統(tǒng)[J];航空精密制造技術(shù);2015年03期
4 諶進(jìn);馬尚昌;張素娟;楊筆鋒;;基于UCOS-Ⅱ和LwIP的串口設(shè)備聯(lián)網(wǎng)技術(shù)研究[J];電子設(shè)計(jì)工程;2015年10期
5 陳勝奮;謝明紅;;工業(yè)機(jī)器人運(yùn)動(dòng)碰撞的仿真實(shí)現(xiàn)[J];華僑大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期
6 駱敏舟;方健;趙江海;;工業(yè)機(jī)器人的技術(shù)發(fā)展及其應(yīng)用[J];機(jī)械制造與自動(dòng)化;2015年01期
7 郭發(fā)勇;梅濤;趙江海;;D-H法建立連桿坐標(biāo)系存在的問(wèn)題及改進(jìn)[J];中國(guó)機(jī)械工程;2014年20期
8 林威;江五講;;工業(yè)機(jī)器人笛卡爾空間軌跡規(guī)劃[J];機(jī)械工程與自動(dòng)化;2014年05期
9 張舒曼;周亞軍;;基于Matlab的機(jī)器人運(yùn)動(dòng)學(xué)分析與軌跡規(guī)劃仿真[J];工業(yè)控制計(jì)算機(jī);2014年08期
10 王寧;張新敏;;基于MATLAB的六自由度機(jī)器人軌跡規(guī)劃與仿真[J];制造業(yè)自動(dòng)化;2014年15期
相關(guān)碩士學(xué)位論文 前10條
1 付立友;基于WinCE的機(jī)器人示教器軟件系統(tǒng)設(shè)計(jì)[D];東南大學(xué);2016年
2 梁僑;6-DOF工業(yè)機(jī)器人軌跡規(guī)劃及控制方法研究[D];青島理工大學(xué);2015年
3 俞曉慧;串聯(lián)機(jī)器人軌跡規(guī)劃研究及其控制系統(tǒng)設(shè)計(jì)[D];合肥工業(yè)大學(xué);2015年
4 宋金華;六軸工業(yè)機(jī)器人的軌跡規(guī)劃與控制系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2013年
5 劉健;基于MH50六軸機(jī)器人的軌跡規(guī)劃研究[D];大連海事大學(xué);2013年
6 王樂(lè);基于嵌入式計(jì)算機(jī)的機(jī)器人示教器研究[D];天津大學(xué);2012年
7 辛鑫;機(jī)器人手持智能終端系統(tǒng)的研發(fā)[D];天津大學(xué);2013年
8 楊威;基于以太網(wǎng)的工業(yè)機(jī)器人示教裝置開(kāi)發(fā)[D];華中科技大學(xué);2011年
9 孟國(guó)軍;工業(yè)機(jī)器人離線(xiàn)編程系統(tǒng)關(guān)鍵技術(shù)的研究[D];華中科技大學(xué);2011年
10 凌家良;基于OpenGL的工業(yè)機(jī)器人運(yùn)動(dòng)仿真軟件的設(shè)計(jì)與實(shí)現(xiàn)[D];中南大學(xué);2009年
,本文編號(hào):2260655
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2260655.html