天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 自動(dòng)化論文 >

基于花朵授粉算法的軟子空間聚類算法優(yōu)化研究

發(fā)布時(shí)間:2018-10-05 19:36
【摘要】:隨著信息技術(shù)、數(shù)據(jù)收集和存儲(chǔ)技術(shù)的不斷發(fā)展,數(shù)據(jù)規(guī)模逐漸擴(kuò)大、維度逐漸增高,傳統(tǒng)聚類算法受高維數(shù)據(jù)稀疏性和維度災(zāi)難的影響無(wú)法進(jìn)行有效聚類,為解決高維數(shù)據(jù)聚類問題,軟子空間聚類分析技術(shù)應(yīng)運(yùn)而生并得到廣泛關(guān)注。軟子空間聚類通過描述各樣本隸屬于不同簇的不確定性進(jìn)行聚類,具有更好的適應(yīng)性和靈活性、更接近于客觀世界。但現(xiàn)有軟子空間聚類算法主要存在以下兩方面不足:采用隨機(jī)選取樣本點(diǎn)的方法初始化聚類中心,導(dǎo)致算法的聚類精度和穩(wěn)定性依賴于初始簇心;采用的局部搜索策略,導(dǎo)致算法在聚類過程中易陷入局部最優(yōu)。本文針對(duì)上述問題進(jìn)行深入研究,具體研究?jī)?nèi)容如下:(1)針對(duì)聚類結(jié)果依賴于初始簇心的問題,本文對(duì)快速搜索算法(CFSFDP)進(jìn)行優(yōu)化,通過引入投影分區(qū)和類合并技術(shù),提出一種基于投影分區(qū)及類合并技術(shù)優(yōu)化算法(PM-CFSFDP),可以獲得更加精準(zhǔn)的類中心點(diǎn)。將PM-CFSFDP作為初始化步驟應(yīng)用于軟子空間聚類中,為其選擇最佳聚類中心,降低算法對(duì)初始簇心的依賴。(2)針對(duì)在聚類過程中易陷入局部最優(yōu)的問題,本文對(duì)花朵授粉算法(FPA)進(jìn)行優(yōu)化,通過引入混合蛙跳思想和自適應(yīng)高斯變異策略,提出一種基于自適應(yīng)高斯變異的混合蛙跳花朵授粉算法(AGM-SFLFPA),可有效避免陷入局部最優(yōu)且收斂速度較快。將AGM-SFLFPA作為全局優(yōu)化搜索策略應(yīng)用于軟子空間聚類中,為其搜索最優(yōu)權(quán)值,有效避免陷入局部最優(yōu)。(3)將兩個(gè)改進(jìn)的算法PM-CFSFDP和AGM-SFLFPA引入軟子空間中,提出一種基于花朵授粉算法的軟子空間聚類算法(FPASC)。在UCI標(biāo)準(zhǔn)數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,在處理高維數(shù)據(jù)時(shí),FPASC算法可降低對(duì)初始簇心的依賴,避免在搜索過程中陷入局部最優(yōu),有效提高了軟子空間算法的聚類精度和穩(wěn)定性。
[Abstract]:With the development of information technology, data collection and storage technology, the scale of data is gradually expanding and the dimension is gradually increasing. The traditional clustering algorithm is unable to cluster effectively because of the sparsity of high-dimensional data and the disaster of dimensionality. In order to solve the problem of high dimensional data clustering, soft subspace clustering analysis technology emerged as the times require and received wide attention. Soft subspace clustering by describing the uncertainty of samples belonging to different clusters has better adaptability and flexibility and is closer to the objective world. However, the existing soft subspace clustering algorithms mainly have the following two shortcomings: the clustering center is initialized by randomly selecting sample points, which results in the clustering accuracy and stability of the algorithm depend on the initial cluster center, and the local search strategy is adopted. As a result, the algorithm is prone to fall into local optimum in the process of clustering. The main contents of this paper are as follows: (1) aiming at the problem that the clustering results depend on the initial cluster center, this paper optimizes the fast search algorithm (CFSFDP), and introduces the projection partition and class merging techniques. An optimization algorithm based on projection partitioning and class merging (PM-CFSFDP) is proposed to obtain more accurate center points of classes. PM-CFSFDP is applied to soft subspace clustering as an initialization step to select the best clustering center to reduce the dependence of the algorithm on the initial cluster center. (2) aiming at the problem that the clustering process is prone to fall into local optimum. In this paper, the flower pollination algorithm (FPA) is optimized by introducing the mixed leapfrog idea and adaptive Gao Si mutation strategy. A hybrid leapfrog flower pollination algorithm (AGM-SFLFPA) based on adaptive Gao Si mutation is proposed, which can effectively avoid falling into local optimum and converge quickly. AGM-SFLFPA is applied to soft subspace clustering as a global optimal search strategy to search the optimal weights. (3) two improved algorithms, PM-CFSFDP and AGM-SFLFPA, are introduced into soft subspace. A soft subspace clustering algorithm (FPASC). Based on flower pollination algorithm is proposed. The experimental results on the UCI standard data set show that the algorithm can reduce the dependence on the initial cluster center, avoid falling into local optimum in the search process, and effectively improve the clustering accuracy and stability of the soft subspace algorithm.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18;TP311.13

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李俊麗;;基于K-Means的軟子空間聚類算法研究綜述[J];艦船電子工程;2016年05期

2 吉成恒;雷詠梅;;大規(guī)模數(shù)據(jù)集聚類的K鄰近均勻抽樣數(shù)據(jù)預(yù)處理算法[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年01期

3 劉穎瑩;劉培玉;王智昊;李情情;朱振方;;一種基于密度峰值發(fā)現(xiàn)的文本聚類算法[J];山東大學(xué)學(xué)報(bào)(理學(xué)版);2016年01期

4 邱云飛;楊倩;唐曉亮;;基于粒子群優(yōu)化的軟子空間聚類算法[J];模式識(shí)別與人工智能;2015年10期

5 肖輝輝;萬(wàn)常選;段艷明;;一種改進(jìn)的新型元啟發(fā)式花朵授粉算法[J];計(jì)算機(jī)應(yīng)用研究;2016年01期

6 李國(guó)成;肖慶憲;;一種布谷鳥-交叉熵混合優(yōu)化算法及其性能仿真[J];上海理工大學(xué)學(xué)報(bào);2015年02期

7 馮朝勝;秦志光;袁丁;;云數(shù)據(jù)安全存儲(chǔ)技術(shù)[J];計(jì)算機(jī)學(xué)報(bào);2015年01期

8 褚格林;;基于聚類模型的電信客戶細(xì)分研究[J];統(tǒng)計(jì)與決策;2014年08期

9 劉淑芬;孟冬雪;王曉燕;;基于網(wǎng)格單元的DBSCAN算法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2014年04期

10 錢美旋;葉東毅;;利用一維投影分析的無(wú)參數(shù)多密度聚類算法[J];小型微型計(jì)算機(jī)系統(tǒng);2013年08期

相關(guān)博士學(xué)位論文 前4條

1 劉兆軍;XML文檔數(shù)據(jù)集聚類問題研究[D];吉林大學(xué);2015年

2 方正;多媒體數(shù)據(jù)挖掘中的跨數(shù)據(jù)域遷移學(xué)習(xí)[D];浙江大學(xué);2014年

3 唐東明;聚類分析及其應(yīng)用研究[D];電子科技大學(xué);2010年

4 胡蓉;WEB日志和子空間聚類挖掘算法研究[D];華中科技大學(xué);2008年

相關(guān)碩士學(xué)位論文 前7條

1 許亞駿;子空間聚類算法研究及應(yīng)用[D];江南大學(xué);2016年

2 王崢;基于人工蜂群算法的軟子空間聚類算法研究[D];東北師范大學(xué);2014年

3 曹佳韻;基于文本挖掘的領(lǐng)域信息聚類分析[D];上海交通大學(xué);2013年

4 張井;高維數(shù)據(jù)子空間聚類算法研究[D];天津大學(xué);2012年

5 趙卓真;一種基于密度與網(wǎng)格的聚類方法[D];中山大學(xué);2012年

6 關(guān)慶;增強(qiáng)的軟子空間聚類技術(shù)的研究[D];江南大學(xué);2011年

7 龐晶晶;面向電信業(yè)的客戶消費(fèi)行為知識(shí)發(fā)現(xiàn)研究[D];華南理工大學(xué);2010年

,

本文編號(hào):2254619

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2254619.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c76fa***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com