面向組合優(yōu)化問題的粒子群算法的研究
[Abstract]:The combinatorial optimization problem is a typical NP-hard problem. In this paper, the improved particle swarm optimization algorithm is applied to the field of disordered composition optimization and ordered service composition optimization, respectively. The existing improved particle swarm optimization (PSO) algorithm has some shortcomings, most of which are not of universal value for a specific scenario, PSO algorithm has randomness in the process of searching for the optimal solution, so it can not guarantee the diversity of the combination scheme. Most algorithms do not provide a personalized interface and particle swarm optimization algorithm increases exponentially with the particle dimension and the efficiency of solving combinatorial optimization problem with large particle dimension is low. In this paper, a new chaotic particle swarm optimization (Chaos Particle Swarm Optimization,CS-PSO) is proposed by introducing chaotic search method into particle swarm optimization (PSO) for disordered combinatorial optimization problems. By introducing chaos theory into particle swarm optimization algorithm, the initialization and update stages of the algorithm are improved, and a new set of initialization and update rules are used to improve the overall search efficiency of the algorithm, and the algorithm has good global search ability and adaptability. Effectively solve the problem of particle precocity and ensure the diversity of the final portfolio. In the fitness function of the algorithm, the concepts of personalized constraint and general constraint are introduced to make the algorithm have a personalized interface, which can be used to solve the combinatorial optimization problem with individuation. In order service composition optimization problem, the application scenario chosen in this paper is that Web service composition optimization domain. Web service composition optimization is not only a NP-hard problem, but also needs to consider the logical sequence relationship between service and service. So finding the best service composition is even more difficult. In this paper, a predatory search based chaotic particle swarm optimization (Predatory Search-Based Chaos Particle Swarm Optimization,PS-CTPSO) algorithm is proposed for the Web service composition optimization problem with logical sequence relationship. The predation search strategy and chaos are introduced into the particle swarm optimization algorithm. Cotangent sequence method of properties, According to the characteristics of Web services, the initialization and update phases are further optimized, and the search efficiency of the algorithm and the diversity of Web service composition are ensured by logic optimization. Finally, this paper constructs the personalized breakfast recommendation system (Friend) and the best Web service composition recommendation system (Best Web Service Combination Recommendation System,BestWS) according to the two algorithms. The combination scheme recommended by this algorithm is more efficient and reasonable, and the algorithm in this paper has certain application value in the field of combinatorial optimization.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王瑞;陳永剛;;基于捕食搜索策略的粒子群算法求解高鐵閉塞分區(qū)劃分問題[J];鐵道標(biāo)準(zhǔn)設(shè)計(jì);2016年01期
2 楊慶;陳強(qiáng);李珍珍;;帶時(shí)間窗車輛路徑問題的混沌粒子群優(yōu)化算法[J];計(jì)算機(jī)技術(shù)與發(fā)展;2015年08期
3 張燕平;荊紫慧;張以文;錢付蘭;石磊;;基于離散粒子群算法的動態(tài)Web服務(wù)組合[J];計(jì)算機(jī)科學(xué);2015年06期
4 唐崇;;Web服務(wù)組合QoS優(yōu)化問題綜述[J];信息技術(shù)與信息化;2015年04期
5 趙新超;劉國蒞;劉虎球;趙國帥;;基于非均勻變異和多階段擾動的粒子群優(yōu)化算法[J];計(jì)算機(jī)學(xué)報(bào);2014年09期
6 郭通;蘭巨龍;李玉峰;陳世文;;自適應(yīng)的分?jǐn)?shù)階達(dá)爾文粒子群優(yōu)化算法[J];通信學(xué)報(bào);2014年04期
7 朱喜華;李穎暉;李寧;范炳奎;;基于群體早熟程度和非線性周期振蕩策略的改進(jìn)粒子群算法[J];通信學(xué)報(bào);2014年02期
8 溫濤;盛國軍;郭權(quán);李迎秋;;基于改進(jìn)粒子群算法的Web服務(wù)組合[J];計(jì)算機(jī)學(xué)報(bào);2013年05期
9 劉冬華;甘若迅;樊鎖海;楊明華;;基于捕食策略的粒子群算法求解投資組合問題[J];計(jì)算機(jī)工程與應(yīng)用;2013年06期
10 胥小波;鄭康鋒;李丹;武斌;楊義先;;新的混沌粒子群優(yōu)化算法[J];通信學(xué)報(bào);2012年01期
相關(guān)碩士學(xué)位論文 前5條
1 劉暢;基于混合啟發(fā)式算法的單線公交車輛調(diào)度問題研究[D];北京交通大學(xué);2016年
2 荊紫慧;基于改進(jìn)離散粒子群算法的Web服務(wù)組合研究[D];安徽大學(xué);2016年
3 尹徐珊;基于改進(jìn)PSO算法的投資組合優(yōu)化方法的設(shè)計(jì)和實(shí)現(xiàn)[D];東南大學(xué);2015年
4 劉長彬;基于粒子群和人工魚群混合優(yōu)化排課系統(tǒng)研究[D];成都理工大學(xué);2015年
5 王濤;基于捕食搜索策略的自適應(yīng)混沌粒子群算法的研究及應(yīng)用[D];暨南大學(xué);2013年
,本文編號:2207517
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2207517.html