基于多傳感器信息處理紙幣檢測(cè)若干關(guān)鍵技術(shù)研究
[Abstract]:With the increasing of RMB circulation and circulation, and the deepening of RMB internationalization, the level of automation and information technology is urgently needed to be improved in China's financial equipment, such as banknote checking machines, sorting machines, ATM machines, and so on, in the area of RMB circulation. In order to ensure the efficiency and management level of RMB circulation, effectively crack down on the criminal activities of banknote counterfeiting, guarantee the function of RMB and the security of financial system. This paper analyzes the shortcomings and defects of the existing RMB banknotes detection technology in China's financial equipment industry: the optical and magnetic characteristics are mostly identified by qualitative analysis and low level quantitative analysis. The multi-sensor feature identification method is relatively isolated and the ability of information fusion is weak, the complexity of intelligent algorithm is on the high side and the real time is poor, and so on, and aiming at the problems of the isolation of sensor feature identification method and the weak ability of information fusion, etc. Several key techniques of paper currency detection based on multi-sensor information processing are studied from the aspects of multi-sensor paper currency detection electromechanical verification platform and image processing algorithm based on multi-sensor information. The multi-sensor paper currency detection and electromechanical verification platform includes the hardware and software design of the electromechanical platform and the detection and control system. Through the construction of the electromechanical verification platform, the paper currency transfer mechanism under the control of the detection and control system realizes the motion control process of each sensor module of the electromechanical platform in turn, and realizes the paper currency optics. The original data of magnetic and image anti-counterfeiting features are dynamically collected and uploaded to PC to provide data support for the off-line simulation research of quantitative analysis and identification of banknote anti-counterfeiting features. The detection and control system includes electromechanical control and optomagnetic detection system and paper money image acquisition system based on FPGA and CIS. The two subsystems make full use of their control interface and communication interface to realize the sharing of cooperative work and multi-sensor identification information between the two subsystems. It provides a platform for the simulation of multi-sensor information fusion algorithm. In the research work of paper currency image processing algorithm based on multi-sensor information, firstly, the weighted least square method is used to detect the tilt of the skewed banknote image and the miscut transform algorithm is used to correct the banknote image. It ensures the correct segmentation and extraction of the feature areas of banknote image, such as crowning and number. Compared with the experiments of random Hough transform and ordinary least square method, the simulation results show that the proposed algorithm has the advantages of small computation and good stability, and can quickly realize the skew correction of paper currency images. Based on the skew correction of banknote image and the electromechanical verification platform, the multi-sensor discriminant information sharing condition can be realized, and the face value information of banknotes can be identified by using magnetic feature discriminant information. Research on fast segmentation and recognition algorithm of banknote image. The feature region segmentation and extraction algorithm based on multi-sensor information paper currency image is advantageous to transplant to FPGA paper currency image acquisition system, in order to reduce the processing task of DSP processing unit in typical embedded paper currency image processing system. This paper focuses on the multi-sensor paper currency detection based on the establishment of electromechanical verification platform and based on multi-sensor information paper currency image processing algorithm simulation research based on multi-sensor information processing paper currency detection technology. In order to simplify the algorithm and flow of paper currency image processing, the paper provides a platform of raw data and physical simulation verification for the research of multi-sensor information fusion algorithm. In order to improve the cooperative ability of each unit and the efficiency of paper money image processing, a beneficial preliminary research attempt was made by allocating the tasks of each processing unit of embedded paper currency image processing system.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李和;周斌;;基于磁信號(hào)檢測(cè)的人民幣面值識(shí)別技術(shù)研究[J];科技展望;2016年31期
2 劉艷萍;杜秋晨;張進(jìn)東;;基于BP神經(jīng)網(wǎng)絡(luò)的紙幣面向識(shí)別方法[J];計(jì)算機(jī)應(yīng)用與軟件;2015年11期
3 索雙富;許汝真;孟國營;楊杰;;模式識(shí)別技術(shù)在人民幣檢偽中的應(yīng)用研究[J];機(jī)械設(shè)計(jì)與制造;2015年11期
4 苑瑋琦;李之奇;;人民幣紙幣全息磁性開窗安全線檢測(cè)方法研究[J];電子設(shè)計(jì)工程;2015年21期
5 魯亞青;師占群;胡亞欣;劉芳;;基于多傳感器的偽鈔鑒別系統(tǒng)及其信號(hào)特征分析[J];河北工業(yè)大學(xué)學(xué)報(bào);2015年02期
6 劉夢(mèng)濤;金曉峰;劉道余;梁添才;;接觸式圖像傳感器在金融電子裝備中的應(yīng)用研究[J];科技傳播;2015年03期
7 鄧安良;任明武;;基于HSV空間的紙幣面額識(shí)別算法研究[J];現(xiàn)代電子技術(shù);2015年02期
8 陳正偉;朱建華;周律;劉瀏;;人民幣紙幣冠字號(hào)碼字符識(shí)別方法研究[J];浙江科技學(xué)院學(xué)報(bào);2014年06期
9 苑瑋琦;姜楠;;人民幣紙幣紅外、紫外特征檢測(cè)方法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2014年09期
10 劉習(xí)文;薛家祥;;紙幣圖像Gabor特征提取與識(shí)別[J];光學(xué)與光電技術(shù);2014年03期
相關(guān)會(huì)議論文 前1條
1 王榮秋;;自適應(yīng)零值鈔票厚度檢測(cè)裝置及其方法[A];《IT時(shí)代周刊》論文專版(第317期)[C];2015年
相關(guān)碩士學(xué)位論文 前7條
1 李欣;基于TMR傳感器的人民幣紙幣鑒別與面值識(shí)別技術(shù)研究[D];杭州電子科技大學(xué);2015年
2 董靜;紙幣鑒偽系統(tǒng)設(shè)計(jì)與磁圖像特征識(shí)別方法研究[D];北方工業(yè)大學(xué);2014年
3 蔣天瑜;基于多光譜圖像的紙幣防偽鑒定技術(shù)研究[D];華中科技大學(xué);2013年
4 蔣海波;掃描圖像的傾斜校正、分割與壓縮[D];山東大學(xué);2012年
5 錢斐斐;紙幣殘損狀態(tài)識(shí)別技術(shù)研究[D];上海交通大學(xué);2011年
6 許萬征;紙幣多光譜圖像分析方法[D];哈爾濱工業(yè)大學(xué);2010年
7 盧龍;基于磁信號(hào)與紅外圖像的紙幣鑒別技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2009年
,本文編號(hào):2164167
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2164167.html