天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動化論文 >

應(yīng)用k-means算法實現(xiàn)標(biāo)記分布學(xué)習(xí)

發(fā)布時間:2018-07-28 16:36
【摘要】:標(biāo)記分布學(xué)習(xí)是近年來提出的一種新的機器學(xué)習(xí)范式,它能很好地解決某些標(biāo)記多義性的問題。現(xiàn)有的標(biāo)記分布學(xué)習(xí)算法均利用條件概率建立參數(shù)模型,但未能充分利用特征和標(biāo)記間的聯(lián)系。本文考慮到特征相似的樣本所對應(yīng)的標(biāo)記分布也應(yīng)當(dāng)相似,利用原型聚類的k均值算法(k-means),將訓(xùn)練集的樣本進行聚類,提出基于kmeans算法的標(biāo)記分布學(xué)習(xí)(label distribution learning based on k-means algorithm,LDLKM)。首先通過聚類算法kmeans求得每一個簇的均值向量,然后分別求得對應(yīng)標(biāo)記分布的均值向量。最后將測試集和訓(xùn)練集的均值向量間的距離作為權(quán)重,應(yīng)用到對測試集標(biāo)記分布的預(yù)測上。在6個公開的數(shù)據(jù)集上進行實驗,并與3種已有的標(biāo)記分布學(xué)習(xí)算法在5種評價指標(biāo)上進行比較,實驗結(jié)果表明提出的LDLKM算法是有效的。
[Abstract]:Label distributed learning is a new machine learning paradigm proposed in recent years. It can solve some problems of label polysemy. The existing algorithm of label distribution learning uses conditional probability to establish parameter model, but it fails to make full use of the relationship between feature and marker. In this paper, we consider that the label distribution of the samples with similar features should also be similar. Using the k-means algorithm (k-means) of the prototype clustering, the samples of the training set are clustered, and the label distribution based on the kmeans algorithm is proposed to learn the (label distribution learning based on k-means algorithm (LDLKM). First, the mean vector of each cluster is obtained by clustering algorithm kmeans, and then the mean vector of the corresponding label distribution is obtained respectively. Finally, the distance between the mean vector of the test set and the training set is used as the weight to predict the marked distribution of the test set. The experiments are carried out on six open data sets and compared with three existing label distributed learning algorithms on five evaluation indexes. The experimental results show that the proposed LDLKM algorithm is effective.
【作者單位】: 閩南師范大學(xué)粒計算重點實驗室;
【基金】:國家自然科學(xué)基金項目(61379049,61379089)
【分類號】:TP181
,

本文編號:2150903

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2150903.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6fe45***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
日本欧美一区二区三区就| 国产午夜福利在线观看精品| 日韩人妻精品免费一区二区三区| 色婷婷国产熟妇人妻露脸| 亚洲人午夜精品射精日韩 | 伊人天堂午夜精品草草网| 色婷婷在线精品国自产拍| 国产精品香蕉一级免费| 精品推荐久久久国产av| 美女被后入福利在线观看| 欧美一区二区三区十区| 国产女高清在线看免费观看| 人妻久久这里只有精品| 日韩欧美国产精品自拍| 老司机精品在线你懂的| 午夜国产精品福利在线观看| 国产精品大秀视频日韩精品| 男女一进一出午夜视频| 日本在线视频播放91| 国产精品亚洲综合天堂夜夜| 手机在线观看亚洲中文字幕| 五月天丁香婷婷一区二区| 欧美日韩国产精品自在自线| 麻豆视传媒短视频免费观看| 国产亚洲精品久久久优势| 丁香七月啪啪激情综合| 老司机激情五月天在线不卡| 视频在线免费观看你懂的| 一区二区三区精品人妻| 中文字幕人妻日本一区二区| 精品国产亚洲av成人一区| 亚洲中文字幕人妻系列| 午夜精品福利视频观看| 日韩人妻av中文字幕| 91人妻人澡人人爽人人精品| av在线免费观看在线免费观看| 绝望的校花花间淫事2| 又黄又爽禁片视频在线观看 | 99热九九热这里只有精品| 麻豆国产精品一区二区| 亚洲精品中文字幕无限乱码|