RBF神經(jīng)網(wǎng)絡(luò)在MBR膜污染仿真預(yù)測中的應(yīng)用研究
[Abstract]:With the rapid development of the world economy, the problem of water pollution becomes more and more serious. Membrane bioreactor (MBR) is a new and efficient wastewater treatment technology, which combines membrane separation technology and biological reaction technology. It has been widely used in sewage treatment fields such as domestic sewage, organic wastewater and industrial wastewater. Membrane fouling will affect the performance of MBR membrane separation device, and serious membrane fouling will lead to the decrease of membrane flux and the shortening of membrane service life, which will increase the running cost of MBR system. Therefore, the study of membrane fouling mechanism and predictive control method is to ensure that the membrane bioreactor can achieve large flux operation under stable and low energy consumption conditions. In this paper, the working mechanism of membrane bioreactor, the formation process of membrane fouling, the influence of membrane fouling and the control factors are analyzed and discussed. In view of the complex factors involved in membrane fouling, three kinds of membrane fouling factors, which contribute more than 95%, were selected by principal component analysis (PCA) method: the operating pressure (P) and temperature (T) of suspension solid (MLSS),. The three influence factors are set up as the three input parameters of MBR membrane fouling simulation. The membrane flux is taken as the output parameter, and the intelligent simulation prediction model of membrane fouling based on RBF neural network is established to realize the predictive control of membrane fouling. Genetic algorithm is introduced to optimize the four parameters of RBF prediction model, such as error, training speed, maximum number of neurons and the interval of neurons, so as to improve the simulation performance of RBF network. The whole experiment process is realized by MATLAB programming. The results show that the RBF neural network optimized by genetic algorithm can obviously improve the prediction accuracy and achieve the expected effect. The whole experiment process has certain theoretical value and practical significance, and should play a positive guiding role in the practical project of MBR. Because the process of membrane fouling will produce a large amount of data, the fouling data can be stored and processed, which can be more convenient to understand the membrane fouling status in different time periods of MBR system, and then combine the high precision prediction function of membrane fouling prediction model. Hadoop is the most widely used big data processing platform at present, which has the ability of distributed processing information. It is introduced into MBR process. Using the batch processing characteristic of Hive and the real-time query function of Impala to store and process massive data, a distributed MBR membrane fouling data storage and analysis platform is constructed, which provides a convenient information processing platform for controlling membrane fouling process.
【學位授予單位】:天津工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X703;TP183
【相似文獻】
相關(guān)期刊論文 前10條
1 石樂明;唐宏志;周家駒;;神經(jīng)網(wǎng)絡(luò)及其在化學中的應(yīng)用[J];化學通報;1992年11期
2 雷明,李作清,陳志祥,吳雅,楊叔子;神經(jīng)網(wǎng)絡(luò)在預(yù)報控制中的應(yīng)用[J];機床;1993年11期
3 楊自厚;神經(jīng)網(wǎng)絡(luò)技術(shù)及其在鋼鐵工業(yè)中的應(yīng)用第8講人工神經(jīng)網(wǎng)絡(luò)在鋼鐵工業(yè)中的應(yīng)用(下)[J];冶金自動化;1997年05期
4 李潤生,李延輝,胡學軍,劉壯,王守儉;神經(jīng)網(wǎng)絡(luò)在冶金中的應(yīng)用[J];鋼鐵研究;1998年02期
5 劉海玲,劉樹深,尹情勝,夏之寧,易忠勝;線性神經(jīng)網(wǎng)絡(luò)及在多組分分析中的初步應(yīng)用[J];計算機與應(yīng)用化學;2000年Z1期
6 王繼宗,王西娟;用神經(jīng)網(wǎng)絡(luò)確定梁上裂紋位置的研究[J];煤炭學報;2000年S1期
7 趙學慶,袁景淇,周又玲,賀松;生物發(fā)酵過程神經(jīng)網(wǎng)絡(luò)狀態(tài)預(yù)報器的驗證[J];無錫輕工大學學報;2000年06期
8 李智,姚駐斌,張望興,賀超武;基于神經(jīng)網(wǎng)絡(luò)的混勻配料優(yōu)化方法[J];鋼鐵研究;2000年04期
9 胡敏藝,馬榮駿;神經(jīng)網(wǎng)絡(luò)在冶金工業(yè)中的應(yīng)用[J];湖南有色金屬;2000年05期
10 倪建軍,邵琳;利用神經(jīng)網(wǎng)絡(luò)進行觀測數(shù)據(jù)的分析與處理[J];連云港化工高等?茖W校學報;2000年04期
相關(guān)會議論文 前10條
1 徐春玉;;基于泛集的神經(jīng)網(wǎng)絡(luò)的混沌性[A];1996中國控制與決策學術(shù)年會論文集[C];1996年
2 周樹德;王巖;孫增圻;孫富春;;量子神經(jīng)網(wǎng)絡(luò)[A];2003年中國智能自動化會議論文集(上冊)[C];2003年
3 羅山;張琳;范文新;;基于神經(jīng)網(wǎng)絡(luò)和簡單規(guī)劃的識別融合算法[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學術(shù)會議論文集[C];2009年
4 郭愛克;馬盡文;丁康;;序言(二)[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學術(shù)會議論文集[C];1999年
5 鐘義信;;知識論:神經(jīng)網(wǎng)絡(luò)的新機遇——紀念中國神經(jīng)網(wǎng)絡(luò)10周年[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學術(shù)會議論文集[C];1999年
6 許進;保錚;;神經(jīng)網(wǎng)絡(luò)與圖論[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學術(shù)會議論文集[C];1999年
7 金龍;朱詩武;趙成志;陳寧;;數(shù)值預(yù)報產(chǎn)品的神經(jīng)網(wǎng)絡(luò)釋用預(yù)報應(yīng)用[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學術(shù)會議論文集[C];1999年
8 田金亭;;神經(jīng)網(wǎng)絡(luò)在中學生創(chuàng)造力評估中的應(yīng)用[A];第十二屆全國心理學學術(shù)大會論文摘要集[C];2009年
9 唐墨;王科俊;;自發(fā)展神經(jīng)網(wǎng)絡(luò)的混沌特性研究[A];2009年中國智能自動化會議論文集(第七分冊)[南京理工大學學報(增刊)][C];2009年
10 張廣遠;萬強;曹海源;田方濤;;基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的故障診斷方法研究[A];第十二屆全國設(shè)備故障診斷學術(shù)會議論文集[C];2010年
相關(guān)重要報紙文章 前10條
1 美國明尼蘇達大學社會學博士 密西西比州立大學國家戰(zhàn)略規(guī)劃與分析研究中心資深助理研究員 陳心想;維護好創(chuàng)新的“神經(jīng)網(wǎng)絡(luò)硬件”[N];中國教師報;2014年
2 盧業(yè)忠;腦控電腦 驚世駭俗[N];計算機世界;2001年
3 葛一鳴 路邊文;人工神經(jīng)網(wǎng)絡(luò)將大顯身手[N];中國紡織報;2003年
4 中國科技大學計算機系 邢方亮;神經(jīng)網(wǎng)絡(luò)挑戰(zhàn)人類大腦[N];計算機世界;2003年
5 記者 孫剛;“神經(jīng)網(wǎng)絡(luò)”:打開復雜工藝“黑箱”[N];解放日報;2007年
6 本報記者 劉霞;美用DNA制造出首個人造神經(jīng)網(wǎng)絡(luò)[N];科技日報;2011年
7 健康時報特約記者 張獻懷;干細胞移植:修復受損的神經(jīng)網(wǎng)絡(luò)[N];健康時報;2006年
8 劉力;我半導體神經(jīng)網(wǎng)絡(luò)技術(shù)及應(yīng)用研究達國際先進水平[N];中國電子報;2001年
9 ;神經(jīng)網(wǎng)絡(luò)和模糊邏輯[N];世界金屬導報;2002年
10 鄒麗梅 陳耀群;江蘇科大神經(jīng)網(wǎng)絡(luò)應(yīng)用研究通過鑒定[N];中國船舶報;2006年
相關(guān)博士學位論文 前10條
1 楊旭華;神經(jīng)網(wǎng)絡(luò)及其在控制中的應(yīng)用研究[D];浙江大學;2004年
2 李素芳;基于神經(jīng)網(wǎng)絡(luò)的無線通信算法研究[D];山東大學;2015年
3 石艷超;憶阻神經(jīng)網(wǎng)絡(luò)的混沌性及幾類時滯神經(jīng)網(wǎng)絡(luò)的同步研究[D];電子科技大學;2014年
4 王新迎;基于隨機映射神經(jīng)網(wǎng)絡(luò)的多元時間序列預(yù)測方法研究[D];大連理工大學;2015年
5 付愛民;極速學習機的訓練殘差、穩(wěn)定性及泛化能力研究[D];中國農(nóng)業(yè)大學;2015年
6 李輝;基于粒計算的神經(jīng)網(wǎng)絡(luò)及集成方法研究[D];中國礦業(yè)大學;2015年
7 王衛(wèi)蘋;復雜網(wǎng)絡(luò)幾類同步控制策略研究及穩(wěn)定性分析[D];北京郵電大學;2015年
8 張海軍;基于云計算的神經(jīng)網(wǎng)絡(luò)并行實現(xiàn)及其學習方法研究[D];華南理工大學;2015年
9 李艷晴;風速時間序列預(yù)測算法研究[D];北京科技大學;2016年
10 陳輝;多維超精密定位系統(tǒng)建模與控制關(guān)鍵技術(shù)研究[D];東南大學;2015年
相關(guān)碩士學位論文 前10條
1 章穎;混合不確定性模塊化神經(jīng)網(wǎng)絡(luò)與高校效益預(yù)測的研究[D];華南理工大學;2015年
2 賈文靜;基于改進型神經(jīng)網(wǎng)絡(luò)的風力發(fā)電系統(tǒng)預(yù)測及控制研究[D];燕山大學;2015年
3 李慧芳;基于憶阻器的渦卷混沌系統(tǒng)及其電路仿真[D];西南大學;2015年
4 陳彥至;神經(jīng)網(wǎng)絡(luò)降維算法研究與應(yīng)用[D];華南理工大學;2015年
5 董哲康;基于憶阻器的組合電路及神經(jīng)網(wǎng)絡(luò)研究[D];西南大學;2015年
6 武創(chuàng)舉;基于神經(jīng)網(wǎng)絡(luò)的遙感圖像分類研究[D];昆明理工大學;2015年
7 李志杰;基于神經(jīng)網(wǎng)絡(luò)的上證指數(shù)預(yù)測研究[D];華南理工大學;2015年
8 陳少吉;基于神經(jīng)網(wǎng)絡(luò)血壓預(yù)測研究與系統(tǒng)實現(xiàn)[D];華南理工大學;2015年
9 張韜;幾類時滯神經(jīng)網(wǎng)絡(luò)穩(wěn)定性分析[D];渤海大學;2015年
10 邵雪瑩;幾類時滯不確定神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析[D];渤海大學;2015年
,本文編號:2148900
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2148900.html