多傳感器數(shù)據(jù)融合及其在吸塵機(jī)器人避障中的應(yīng)用
[Abstract]:Automatic detection and automatic control of complex systems can not avoid multi-sensor data acquisition and comprehensive application of information. Therefore, as an important information processing method, data fusion of heterogeneous sensors has become a hot topic. In this paper, traditional mathematical algorithms and computational intelligence algorithms are used to study the data fusion of ultrasonic and infrared sensors. On the basis of programming and simulation, a fuzzy neural network is constructed, and the application of multi-sensor data fusion in autonomous obstacle avoidance of dust cleaning robot is studied. The main work of this paper is as follows: (1) the data fusion of heterogeneous sensors is studied by using traditional mathematical algorithms. In this paper, an adaptive weighted fusion algorithm is proposed to fuse the range information of ultrasonic and infrared sensor ranging systems. The proposed algorithm is programmed and simulated with MATLAB. The simulation results show that the fusion result of the proposed adaptive weighted fusion algorithm is stable and the convergence speed of the algorithm is fast. The weights of each sensor can be allocated adaptively according to the variance of the sensor. (2) A BP neural network is constructed to study the data fusion of heterogeneous sensors. In this paper, a three-layer BP neural network is constructed for the data fusion of ultrasonic and infrared sensors. The designed BP neural network is programmed and simulated by MATLAB. In order to solve the problem of slow convergence speed and unsatisfactory fusion result of standard BP neural network in the simulation results, a training algorithm to increase the additional momentum term is proposed, and the improved results are compared and analyzed. The results show that the convergence speed of BP neural network with momentum term is faster and the fusion result is more accurate than that of ordinary network. (3) the application of data fusion technology in obstacle avoidance of dust cleaning robot is studied. A five-layer fuzzy neural network control system for a floor sweeping robot with five ultrasonic ranging sensors and an angle sensor is constructed. The distance measured by five ultrasonic sensors and the target azimuth angle measured by one angle sensor are taken as the input variables of the system and the fuzzy neural network system is inputted and the network output is obtained by the inference calculation of the system. The design of fuzzy neural network system is simulated by MATLAB. The simulation results show that when there are no obstacles in the environment, the floor sweeping robot can move along a straight line from the setting point to the target point, and when there are obstacles in the environment, The floor sweeping robot can effectively avoid obstacles to reach the target point.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 武世榮;高東旭;鄧君君;;共軛梯度BP神經(jīng)網(wǎng)絡(luò)在模式分類問(wèn)題中的應(yīng)用[J];通訊世界;2017年03期
2 邢曉辰;蔡遠(yuǎn)文;任江濤;趙征宇;;一種考慮傳感器精度的數(shù)據(jù)自適應(yīng)加權(quán)融合算法[J];電訊技術(shù);2015年10期
3 許穎麗;;“十三五”機(jī)器人來(lái)了[J];上海信息化;2015年09期
4 陳咨余;張新偉;葉凌云;;基于LMS算法的多傳感器數(shù)據(jù)加權(quán)融合方法[J];計(jì)算機(jī)工程與應(yīng)用;2014年20期
5 延和;吳斌;;基于改進(jìn)型神經(jīng)網(wǎng)絡(luò)的雙目攝像機(jī)標(biāo)定[J];西南科技大學(xué)學(xué)報(bào);2013年04期
6 張嘉昕;張宇帆;;我國(guó)服務(wù)機(jī)器人產(chǎn)業(yè)成長(zhǎng)途徑與前景對(duì)策研究[J];商業(yè)研究;2012年08期
7 杜鴻英;郭雷;李暉暉;劉坤;;基于不變矩與證據(jù)理論的飛機(jī)序列圖像識(shí)別[J];計(jì)算機(jī)仿真;2010年02期
8 文成林;葛泉波;劉雙劍;;帶有信息反饋的最優(yōu)異步遞推航跡融合算法[J];電子與信息學(xué)報(bào);2009年09期
9 文成林;郭超;高敬禮;;多傳感器多尺度圖像信息融合算法[J];電子學(xué)報(bào);2008年05期
10 羅偉;陳峰;;機(jī)器人超聲波與紅外線傳感器測(cè)距系統(tǒng)的數(shù)據(jù)融合研究[J];儀器儀表用戶;2006年06期
相關(guān)會(huì)議論文 前1條
1 段朝霞;雷兵山;;一種模糊控制的節(jié)能技術(shù)在中央空調(diào)上的應(yīng)用[A];2014年9月建筑科技與管理學(xué)術(shù)交流會(huì)論文集[C];2014年
相關(guān)博士學(xué)位論文 前1條
1 王鑫;基于高分辨率遙感影像的植被分類方法研究[D];北京林業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前9條
1 亓芳;基于BP神經(jīng)網(wǎng)絡(luò)分?jǐn)?shù)階控制器參數(shù)自整定算法改進(jìn)[D];大連交通大學(xué);2013年
2 田間;一種訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)的融合算法[D];吉林大學(xué);2011年
3 崔壯平;基于多傳感器的吸塵機(jī)器人避障技術(shù)研究[D];浙江大學(xué);2011年
4 闕隆樹(shù);數(shù)字通信信號(hào)自動(dòng)調(diào)制識(shí)別中的分類器設(shè)計(jì)與實(shí)現(xiàn)[D];西南交通大學(xué);2010年
5 孫娓娓;BP神經(jīng)網(wǎng)絡(luò)的算法改進(jìn)及應(yīng)用研究[D];重慶大學(xué);2009年
6 徐勇;基于神經(jīng)網(wǎng)絡(luò)的自主吸塵機(jī)器人混合感知系統(tǒng)設(shè)計(jì)及避障規(guī)劃[D];浙江大學(xué);2007年
7 王斌明;基于多傳感器信息融合的移動(dòng)機(jī)器人避障研究[D];南京理工大學(xué);2006年
8 龔華鋒;智能吸塵機(jī)器人多傳感器信息融合研究[D];浙江大學(xué);2004年
9 王火亮;基于超聲波傳感器的智能吸塵機(jī)器人導(dǎo)航系統(tǒng)的研究[D];浙江大學(xué);2002年
,本文編號(hào):2142465
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2142465.html