基于多Agent系統(tǒng)的網(wǎng)絡(luò)協(xié)同控制研究
[Abstract]:With the rapid development of science and technology, the distributed problem of multiple Agent systems is a hot issue. When the problem is complex and distributed, the problem solving often appears to be constrained by resources and capacity. Therefore, the enhancement of capability and the expansion of resources will make the system more effective. In defense, military, environmental monitoring, traffic management and many other aspects of wireless sensor networks are related applications, As one of the applications of multi-sensor network target tracking technology has similar problems as the research of multi-sensor Agent systems. Single sensor is severely restricted by node resources such as perception and processing, so it is difficult to achieve target tracking. It will be a good solution to make full use of resources and avoid resource constraints to achieve better tracking ability by cooperating with multiple Agent systems. In this paper, the cooperative control problem of multiple Agent system network is analyzed, and the basic theory and research direction of multi-Agent system are introduced. In the part of collaborative control, the task decomposition related content is studied, and the directed acyclic graph which describes the constraints and dependencies between tasks by task relation graph is analyzed, which synthesizes the current network environment and communication requirements. The task decomposition algorithm is implemented by describing the XML task tree. Then the task coordination process is studied and a task coordination process based on dynamic task assignment is improved on the basis of comprehensive analysis of several collaboration processes. The effectiveness of task coordination is verified by the capture process. Finally, by analyzing the characteristics of sensor networks and the requirement of target tracking, combined with the principle of Agent collaboration in the previous chapters, a target tracking strategy based on dynamic set is proposed. Based on the change of the target state information and the network node state information, the dynamic tracking set of the member and set capitals with the dynamic change of the target is established in order to make the resource transfer more reasonable and the target tracking more effective. Finally, the simulation analysis under Visual C 6.0 environment also verifies its validity and rationality of resource transfer.
【學(xué)位授予單位】:沈陽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP18;TP13
【參考文獻】
相關(guān)期刊論文 前10條
1 童俊;單甘霖;;基于Cramér-Rao下限的多傳感器跟蹤資源協(xié)同分配[J];宇航學(xué)報;2012年09期
2 文莎;蔡自興;劉麗玨;任孝平;;無線傳感器網(wǎng)絡(luò)多目標(biāo)跟蹤中協(xié)同任務(wù)分配[J];中南大學(xué)學(xué)報(自然科學(xué)版);2012年08期
3 吳林鋒;王剛;劉昌云;楊少春;;基于多智能體的反導(dǎo)傳感器任務(wù)規(guī)劃算法[J];現(xiàn)代防御技術(shù);2012年03期
4 陳愛華;孟勃;朱明;王艷華;;多模式融合的目標(biāo)跟蹤算法[J];光學(xué)精密工程;2009年01期
5 楊柏勝;姬紅兵;;基于無跡卡爾曼濾波的被動多傳感器融合跟蹤[J];控制與決策;2008年04期
6 付斌;張曉雷;陸揚;;CMOS圖像傳感器時序分析研究[J];傳感器與微系統(tǒng);2007年12期
7 薛鋒;劉忠;曲毅;;無線傳感器網(wǎng)絡(luò)中的分布式目標(biāo)被動跟蹤算法[J];系統(tǒng)仿真學(xué)報;2007年15期
8 丁士擁;常天慶;高波;;多Agent系統(tǒng)規(guī)劃協(xié)作過程研究[J];計算機工程與設(shè)計;2007年09期
9 楊秀珍,何友,鞠傳文;基于跟蹤精度控制的傳感器管理方法研究[J];電光與控制;2005年01期
10 周銳,郁鼎文,張玉峰;基于BOM的任務(wù)分解求解策略[J];機械科學(xué)與技術(shù);2003年02期
相關(guān)博士學(xué)位論文 前4條
1 龍慧;無線傳感器網(wǎng)絡(luò)分布式目標(biāo)跟蹤問題研究[D];中南大學(xué);2013年
2 劉欽;多傳感器組網(wǎng)協(xié)同跟蹤方法研究[D];西安電子科技大學(xué);2013年
3 肖正;多Agent系統(tǒng)中合作與協(xié)調(diào)機制的研究[D];復(fù)旦大學(xué);2009年
4 馬巧云;基于多Agent系統(tǒng)的動態(tài)任務(wù)分配研究[D];華中科技大學(xué);2006年
相關(guān)碩士學(xué)位論文 前4條
1 趙慧;多傳感器信息融合目標(biāo)跟蹤算法研究[D];華南理工大學(xué);2014年
2 羅漢忠;基于簇的無線傳感器網(wǎng)絡(luò)目標(biāo)跟蹤研究[D];華南理工大學(xué);2013年
3 王澤毅;多傳感器協(xié)同目標(biāo)跟蹤方法研究[D];西安電子科技大學(xué);2011年
4 諸登峰;無線多傳感器的通信[D];南京理工大學(xué);2006年
,本文編號:2142213
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2142213.html