噴涂機(jī)器人的軌跡規(guī)劃方法研究
[Abstract]:With the wide application of industrial robots, the manufacturing technology of our country is booming and developing towards the advanced equipment with higher degree of automation. Trajectory planning is a key part of the control system of a six-DOF arm spraying robot as a research topic in this paper. In order to make the spraying robot run more smoothly, the adaptive controllable algorithm is used to plan the trajectory of the robot. Firstly, the DH matrix transformation is used to establish the mathematical model of the six-degree-of-freedom manipulator, and the forward and inverse kinematics of the robot are calculated according to the corresponding mathematical model. In order to solve the problems of path interpolation and poor continuity in robot trajectory planning, this paper plans the robot trajectory from three levels, which are adaptive speed planning layer. In the adaptive velocity planning layer, compared with the trapezoidal velocity planning and sinusoidal velocity planning, the S-type curve is used in this paper. In this paper, two kinds of S-type velocity planners are designed, which can adapt to all kinds of situations, and divide the space path of robot into two aspects: space position and attitude fitting in the space pose path fitting layer. The cubic B-spline interpolation is used to solve the smooth transition problem of position space. The attitude solution of robot is carried out by using unit quaternion and the spherical interpolation curve is used to fit the position trajectory of attitude space. The points with large curvature in the path are calculated to be marked, and the speed limit here is limited to ensure that the robot can run smoothly at the high curvature point, and then optimize the speed on the path that requires frequent acceleration and deceleration. In order to prevent the robot from starting and stopping frequently in the course of motion, the speed of the path is optimized on the basis of the robot trajectory planning condition. Finally, the adaptive controllable trajectory planning algorithm is simulated by MATLAB software, and the feasibility of the proposed algorithm is verified.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙皓;劉滿(mǎn)祿;張華;;基于三次非均勻B樣條的6DOF機(jī)械臂軌跡規(guī)劃[J];機(jī)器人技術(shù)與應(yīng)用;2016年06期
2 李宏勝;汪允鶴;黃家才;施昕昕;;工業(yè)機(jī)器人倍四元數(shù)軌跡規(guī)劃算法的研究[J];中國(guó)機(jī)械工程;2016年20期
3 赫建立;朱龍英;成磊;殷久誠(chéng);;基于遺傳算法的6-DOF機(jī)器人最優(yōu)時(shí)間軌跡規(guī)劃[J];機(jī)械傳動(dòng);2015年09期
4 劉蕾;曾輝;柳賀;孫英飛;;六自由度機(jī)器人S型曲線速度規(guī)劃[J];計(jì)算技術(shù)與自動(dòng)化;2015年02期
5 計(jì)時(shí)鳴;黃希歡;;工業(yè)機(jī)器人技術(shù)的發(fā)展與應(yīng)用綜述[J];機(jī)電工程;2015年01期
6 苗建偉;楊鐵寶;曾林森;;一種六自由度機(jī)械手的智能軌跡規(guī)劃[J];組合機(jī)床與自動(dòng)化加工技術(shù);2014年09期
7 林威;江五講;;工業(yè)機(jī)器人笛卡爾空間軌跡規(guī)劃[J];機(jī)械工程與自動(dòng)化;2014年05期
8 王田苗;陶永;;我國(guó)工業(yè)機(jī)器人技術(shù)現(xiàn)狀與產(chǎn)業(yè)化發(fā)展戰(zhàn)略[J];機(jī)械工程學(xué)報(bào);2014年09期
9 賴(lài)永林;林茂松;梁艷陽(yáng);;基于三次非均勻B樣條曲線的機(jī)器人軌跡規(guī)劃算法研究[J];科學(xué)技術(shù)與工程;2013年35期
10 譚民;王碩;;機(jī)器人技術(shù)研究進(jìn)展[J];自動(dòng)化學(xué)報(bào);2013年07期
相關(guān)博士學(xué)位論文 前2條
1 劉海濤;工業(yè)機(jī)器人的高速高精度控制方法研究[D];華南理工大學(xué);2012年
2 雷艷敏;多機(jī)器人系統(tǒng)的動(dòng)態(tài)路徑規(guī)劃方法研究[D];哈爾濱工程大學(xué);2011年
相關(guān)碩士學(xué)位論文 前6條
1 張平;工業(yè)機(jī)器人自適應(yīng)軌跡平滑過(guò)渡算法研究[D];西南科技大學(xué);2016年
2 雷利強(qiáng);基于三次樣條的自適應(yīng)可控制軌跡規(guī)劃技術(shù)[D];西南科技大學(xué);2015年
3 林仕高;搬運(yùn)機(jī)器人笛卡爾空間軌跡規(guī)劃研究[D];華南理工大學(xué);2013年
4 李少坤;噴涂機(jī)器人的設(shè)計(jì)及其運(yùn)動(dòng)誤差分析[D];華中科技大學(xué);2012年
5 陳偉華;工業(yè)機(jī)器人笛卡爾空間軌跡規(guī)劃的研究[D];華南理工大學(xué);2010年
6 楊達(dá)毅;6R型工業(yè)機(jī)器人的運(yùn)動(dòng)學(xué)研究[D];吉林大學(xué);2005年
,本文編號(hào):2138530
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2138530.html