柔性結(jié)構(gòu)分布式光纖變形監(jiān)測技術(shù)研究
[Abstract]:During the long service of aerospace structure, it is easy to induce structural changes due to self-excitation and disturbance of external environment. On the one hand, it will damage the safety and service life of the structure itself; on the other hand, it will lead to the deviation of the reliability of the structure function. Therefore, the deformation monitoring for aerospace structures can not only provide the basis for precise structural shape control and active vibration suppression, but also be of great significance for the assessment of structural health status. Therefore, the fiber Bragg grating sensor is applied to the deformation monitoring of different flexible structures. The deformation state monitoring for flexible structures with different properties is realized by studying different deformation reconstruction algorithms. The main research contents can be divided into the following aspects: firstly, combining the strain sensing principle of the fiber grating sensor, the integration method between the fiber grating sensor system and the tested structure object is studied. The strain sensing characteristics of fiber Bragg grating sensors such as sensitivity linearity precision hysteresis and repeatability are investigated in order to provide a basis for further deformation monitoring. Secondly, according to the particularity and deformation characteristics of aerospace structures at present, two kinds of distributed optical fiber deformation monitoring and reconstruction methods based on Ko displacement theory and plane coordinate transformation are studied respectively. The deformation monitoring system of composite plate structure is constructed. Finite element simulation and test methods are used to evaluate the effect of deformation reconstruction by introducing a variety of error forms. Thirdly, a distributed optical fiber deformation monitoring system for aluminum alloy airfoil is constructed. Based on Ko displacement theory and plane coordinate transformation, two kinds of plate structure deformation reconstruction algorithms are adopted to realize the inversion of deformation state of variable section airfoil structures under different loading modes. On this basis, the deformation monitoring and real-time display system based on LabVIEW display interface is developed. Finally, according to the deformation characteristics of flexible tubular structure, the 3D deformation monitoring method of distributed optical fiber for tubular structure based on spatial coordinate transformation is studied, and the 3D deformation reconstruction of flexible tubular structure is preliminarily realized.
【學位授予單位】:南京航空航天大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:V467;TP212
【參考文獻】
相關(guān)期刊論文 前10條
1 王源;章征林;孫陽陽;張清華;;不同表面粘貼方式對光纖光柵應(yīng)變傳遞的影響[J];壓電與聲光;2016年01期
2 張合生;朱曉錦;李麗;李明東;劉凱寧;;基于二維曲率數(shù)據(jù)的空間曲面形態(tài)重構(gòu)算法[J];應(yīng)用基礎(chǔ)與工程科學學報;2015年05期
3 王濤;孫慶;高巖;劉利;;光纖光柵應(yīng)變特性及其在槽形梁試驗量測中的應(yīng)用[J];鐵道建筑;2014年11期
4 南海陽;韓曉明;劉洪引;吳振亞;;國外臨近空間飛行器發(fā)展現(xiàn)狀及趨勢[J];飛航導(dǎo)彈;2014年10期
5 郝扣安;王振清;周利民;王欣;;彈性地基復(fù)合曲梁抗彎力學性能研究[J];哈爾濱工程大學學報;2014年05期
6 張子騫;顏云輝;楊會林;;薄壁管材矯直曲率半徑數(shù)學模型及其驗證[J];機械工程學報;2013年21期
7 郭蒙;何漢輝;肖定邦;;基于應(yīng)變測量方法的衛(wèi)星天線陣列變形檢測[J];航天器環(huán)境工程;2012年06期
8 李濤;劉浩;;B樣條曲面的雙向插值造型算法[J];計算機工程與應(yīng)用;2012年35期
9 王寅;朱振宇;陳志平;賈永清;;一種適于柔性無人機機翼形變的測試方法[J];計算機測量與控制;2012年11期
10 張倫偉;韋海峰;鄭慶華;楊國標;;形狀記憶合金細長柔桿空間形狀位置測量方法[J];力學季刊;2012年01期
相關(guān)博士學位論文 前6條
1 張合生;基于正交離散FBG網(wǎng)絡(luò)的柔板結(jié)構(gòu)形態(tài)感知與重構(gòu)研究[D];上海大學;2015年
2 易金聰;基于FBG傳感陣列的智能結(jié)構(gòu)形態(tài)感知與主動監(jiān)測研究[D];上海大學;2014年
3 朱方東;總線拓撲結(jié)構(gòu)的大容量光纖光柵傳感網(wǎng)絡(luò)和系統(tǒng)研究[D];武漢理工大學;2014年
4 陸觀;光纖Bragg光柵在智能材料結(jié)構(gòu)健康監(jiān)測中的應(yīng)用研究[D];南京航空航天大學;2011年
5 樊紅朝;基于光纖光柵的動態(tài)面形檢測和可視化關(guān)鍵技術(shù)研究[D];上海大學;2008年
6 曹曄;光纖光柵傳感器解調(diào)技術(shù)及封裝工藝的研究[D];南開大學;2005年
相關(guān)碩士學位論文 前10條
1 張鈺玨;基于光纖光柵傳感網(wǎng)絡(luò)的變形監(jiān)測研究[D];南京航空航天大學;2016年
2 李明;柔性機翼長基線天線形變實時測量[D];西安電子科技大學;2015年
3 劉慧;膠黏劑封裝FBG應(yīng)變傳感器重復(fù)性、一致性及疲勞性研究[D];武漢理工大學;2014年
4 郭蒙;基于應(yīng)變測量的柔性衛(wèi)星天線陣列變形檢測技術(shù)研究[D];國防科學技術(shù)大學;2012年
5 楊林;柔性索桿結(jié)構(gòu)形狀控制實驗系統(tǒng)開發(fā)[D];西安電子科技大學;2012年
6 金昊;拋物面天線日照溫度效應(yīng)分析及溫度傳感器優(yōu)化布置[D];西安電子科技大學;2012年
7 付斌;基于粒子群優(yōu)化算法的光纖光柵反射譜分析技術(shù)的研究[D];東北大學;2011年
8 王曉潔;基于光纖光柵傳感器的瀝青路面性能監(jiān)測研究[D];南京航空航天大學;2010年
9 郭煒;光纖光柵溫度和應(yīng)變測量技術(shù)研究[D];華北電力大學(河北);2009年
10 趙曉華;分布式光纖光柵傳感系統(tǒng)的研究[D];西安理工大學;2008年
,本文編號:2137883
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2137883.html