大跨度橫梁雙驅(qū)消隙同步控制系統(tǒng)設(shè)計(jì)
本文選題:翼盒數(shù)字化裝配 + 大跨度可移動橫梁。 參考:《浙江大學(xué)》2017年碩士論文
【摘要】:大型飛機(jī)外翼翼盒通常采用垂直裝配的方式。為了給翼盒前緣組件定位器提供安裝基礎(chǔ),同時方便大部件的垂直吊裝,翼盒數(shù)字化裝配系統(tǒng)框架需要采用可以整體平移的大跨度橫梁結(jié)構(gòu)。這種大跨度橫梁系統(tǒng)負(fù)載大、同步精度和定位精度要求高,因而給運(yùn)動控制系統(tǒng)設(shè)計(jì)帶來極大難度。論文針對某大型飛機(jī)翼盒數(shù)字化裝配系統(tǒng)中雙邊齒輪齒條驅(qū)動的大跨度橫梁同步運(yùn)動控制問題,研究龍門軸同步耦合雙驅(qū)消隙的位置閉環(huán)控制系統(tǒng)設(shè)計(jì)方法,實(shí)現(xiàn)大跨度橫梁的高精度同步運(yùn)動。論文主要研究內(nèi)容如下:分析某大型飛機(jī)外翼翼盒數(shù)字化裝配系統(tǒng)的組成和功能,對大跨度橫梁系統(tǒng)的機(jī)械結(jié)構(gòu)和驅(qū)動系統(tǒng)進(jìn)行詳細(xì)設(shè)計(jì),在總結(jié)大跨度橫梁系統(tǒng)功能的基礎(chǔ)上,引出雙邊齒輪齒條驅(qū)動的大跨度橫梁同步運(yùn)動控制問題,并且提出橫梁控制系統(tǒng)的設(shè)計(jì)要求和控制策略。建立大跨度橫梁系統(tǒng)動力學(xué)模型,提出龍門軸同步耦合雙驅(qū)消隙的位置閉環(huán)控制系統(tǒng)結(jié)構(gòu),在提出雙驅(qū)消隙系統(tǒng)軟件實(shí)現(xiàn)方式的基礎(chǔ)上,設(shè)計(jì)偏置電流控制器來實(shí)現(xiàn)偏置電流的動態(tài)調(diào)整,并且采用自適應(yīng)摩擦觀測器來補(bǔ)償橫梁系統(tǒng)中未知和時變的摩擦力,最后利用仿真實(shí)驗(yàn)驗(yàn)證所設(shè)計(jì)控制器的有效性。詳細(xì)描述大跨度橫梁系統(tǒng)的硬件和軟件組成,利用Mechaware搭建控制器,并對控制系統(tǒng)的性能進(jìn)行實(shí)驗(yàn)驗(yàn)證。實(shí)驗(yàn)結(jié)果表明,大跨度橫梁系統(tǒng)的定位精度為0.017mm,重復(fù)定位精度為0.003mm,并且在40mm/s的最大速度下運(yùn)行時,橫梁系統(tǒng)的單軸跟蹤誤差為0.05mm,雙軸同步誤差為0.011mm,滿足實(shí)驗(yàn)指標(biāo)的要求,從而證明本文所設(shè)計(jì)控制系統(tǒng)的有效性。最后總結(jié)全文,并對未來的研究方向進(jìn)行展望。
[Abstract]:The wing box of the outer wing of a large aircraft is usually assembled vertically. In order to provide the installation foundation for the positioner of the wing box leading edge assembly and to facilitate the vertical lifting of the large parts, the frame of the wing box digital assembly system needs to adopt the large-span beam structure which can be moved as a whole. This kind of large span crossbeam system requires heavy load and high precision of synchronization and positioning, which brings great difficulty to the design of motion control system. Aiming at the problem of synchronous motion control of long span crossbeam driven by bilateral gear rack in a digital assembly system of wing box of a large aircraft, this paper studies the design method of position closed loop control system of gantry shaft synchronously coupled double drive. The high precision synchronous motion of long span crossbeam is realized. The main contents of this paper are as follows: the composition and function of the digital assembly system of a large aircraft outer wing box are analyzed, and the mechanical structure and drive system of the large span crossbeam system are designed in detail. On the basis of summing up the function of the long-span crossbeam system, the synchronous motion control problem of the long-span crossbeam driven by bilateral gear rack is introduced, and the design requirements and control strategies of the crossbeam control system are put forward. The dynamic model of large span cross beam system is established, and the position closed loop control system structure of the gantry shaft synchronous coupling dual drive system is presented. Based on the software realization of double drive and eliminating gap system, the structure of position closed loop control system is put forward. A bias current controller is designed to dynamically adjust the bias current, and an adaptive friction observer is used to compensate the unknown and time-varying friction forces in the crossbeam system. Finally, the effectiveness of the proposed controller is verified by simulation experiments. The hardware and software components of the long span beam system are described in detail. The controller is built with Mechaware, and the performance of the control system is verified experimentally. The experimental results show that the positioning accuracy of long-span beam system is 0.017 mm, the precision of repeated positioning is 0.003 mm, and the single-axis tracking error is 0.05mm and the biaxial synchronization error is 0.011mm when the system is running at the maximum speed of 40mm/s, which meets the requirements of the experiment. Thus, the effectiveness of the control system designed in this paper is proved. Finally, the paper summarizes the full text and prospects the future research direction.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG95;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳波濤;徐智超;胡新寧;;船載衛(wèi)通站雙電機(jī)偏置電流自適應(yīng)設(shè)置方法[J];現(xiàn)代電子技術(shù);2015年19期
2 劉攀玲;張光輝;劉妙;賈強(qiáng);;基于偏置力矩的雙電機(jī)消隙智能PID控制[J];火炮發(fā)射與控制學(xué)報(bào);2015年02期
3 程瑤;梁滔;趙萬華;;動梁式龍門機(jī)床雙軸同步系統(tǒng)的模型建立及不同步誤差分析[J];機(jī)械工程學(xué)報(bào);2013年13期
4 秦瑞祥;鄒冀華;;工業(yè)機(jī)器人在飛機(jī)數(shù)字化裝配中的應(yīng)用[J];航空制造技術(shù);2010年23期
5 曹玲芝;李春文;牛超;趙德宗;魏尚北;;基于相鄰交叉耦合的多感應(yīng)電機(jī)滑模同步控制[J];電機(jī)與控制學(xué)報(bào);2008年05期
6 鄒冀華;劉志存;范玉青;;大型飛機(jī)部件數(shù)字化對接裝配技術(shù)研究[J];計(jì)算機(jī)集成制造系統(tǒng);2007年07期
7 趙國峰;樊衛(wèi)華;陳慶偉;胡維禮;;齒隙非線性研究進(jìn)展[J];兵工學(xué)報(bào);2006年06期
8 劉善國;;先進(jìn)飛機(jī)裝配技術(shù)及其發(fā)展[J];航空制造技術(shù);2006年10期
9 樓阿莉;國內(nèi)外自動鉆鉚技術(shù)的發(fā)展現(xiàn)狀及應(yīng)用[J];航空制造技術(shù);2005年06期
10 趙國峰,胡維禮;雙電機(jī)驅(qū)動伺服系統(tǒng)齒隙非線性控制研究[J];電氣傳動;2005年02期
相關(guān)博士學(xué)位論文 前4條
1 孟德遠(yuǎn);高精度氣動同步系統(tǒng)研究[D];浙江大學(xué);2013年
2 陳正;基于非線性和柔性特性分析及補(bǔ)償?shù)闹本電機(jī)精密運(yùn)動控制[D];浙江大學(xué);2012年
3 權(quán)建洲;高速工況下H型桁架定位平臺的建模與同步控制[D];華中科技大學(xué);2010年
4 張旭;飛機(jī)大部件對接裝配過程中的干涉檢測技術(shù)研究[D];浙江大學(xué);2008年
相關(guān)碩士學(xué)位論文 前2條
1 董景龍;雙電機(jī)同步驅(qū)動轉(zhuǎn)臺中框建模與變形控制研究[D];上海交通大學(xué);2010年
2 姜飛榮;永磁同步電機(jī)伺服控制系統(tǒng)研究[D];浙江大學(xué);2006年
,本文編號:1883360
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1883360.html