視覺定位裝配機(jī)器人的運(yùn)動控制系統(tǒng)設(shè)計(jì)
本文選題:可編程邏輯控制器 + 運(yùn)動控制系統(tǒng); 參考:《陜西科技大學(xué)》2017年碩士論文
【摘要】:在人工成本不斷攀升的背景下,企業(yè)對自動化以及智能化產(chǎn)品的需求不斷擴(kuò)大,不同功能類型的機(jī)器人在企業(yè)中逐漸普及。作為工業(yè)領(lǐng)域最重要機(jī)種之一的裝配機(jī)器人在企業(yè)生產(chǎn)過程中的運(yùn)用越來越廣泛,設(shè)計(jì)與開發(fā)也日趨成熟。然而,受到裝配精度、價(jià)格以及智能化程度的影響,裝配機(jī)器人很難被大眾化中小型企業(yè)所接受,在很多裝配車間,依然依靠大量的人工對產(chǎn)品進(jìn)行裝配。運(yùn)動控制系統(tǒng)是裝配機(jī)器人實(shí)現(xiàn)復(fù)雜裝配技術(shù)的關(guān)鍵系統(tǒng)。本文以視覺定位裝配機(jī)器人為研究對象,實(shí)用性為理念,控制精度為核心,實(shí)現(xiàn)精密裝配為最終目標(biāo),開發(fā)一款經(jīng)濟(jì)、實(shí)用、智能的運(yùn)動控制系統(tǒng),實(shí)現(xiàn)在工件和裝配點(diǎn)位姿隨機(jī)的情況下,高精度、高效率地完成自動化裝配的目的。(1)通過詳細(xì)地分析裝配工藝過程,明確裝配機(jī)器人運(yùn)動控制系統(tǒng)所要實(shí)現(xiàn)的功能。并以此為依據(jù),完成各主要硬件的選型,并結(jié)合所選硬件和實(shí)際控制要求,完成運(yùn)動控制系統(tǒng)的總體方案設(shè)計(jì)。上位機(jī)選用電腦,下位機(jī)選用PLC,上位機(jī)與PLC之間通過RS485串口通信;同時(shí),PLC通過另一組485端口,以RS485總線的形式實(shí)現(xiàn)對四組伺服電機(jī)的控制。(2)根據(jù)視覺定位裝配機(jī)器人的實(shí)際結(jié)構(gòu),利用第一桿件坐標(biāo)系,建立運(yùn)動學(xué)方程,求出關(guān)節(jié)變量表達(dá)式,并對逆解存在多解的情況進(jìn)行分析,利用“最接近解”原則刪選出最優(yōu)解。利用帶拋物線過渡的線性規(guī)劃完成路徑規(guī)劃,并得到最終的速度和加速度表達(dá)式。(3)采用PR模式控制伺服驅(qū)動器,結(jié)合外圍硬件特點(diǎn)和實(shí)際功能需求,分析PLC所需要的I/O點(diǎn)數(shù)和應(yīng)具備的功能,完成PLC的選型及其I/O地址的分配,完成電氣系統(tǒng)和氣動系統(tǒng)的設(shè)計(jì),組裝好控制柜。并采用模塊化的編程思想,利用梯形圖完成PLC控制系統(tǒng)程序的設(shè)計(jì),實(shí)現(xiàn)了PLC通過RS485總線、Modbus協(xié)議對四組伺服電機(jī)的精確控制。(4)在Visual Studio 2012開發(fā)環(huán)境下,利用MFC開發(fā)上位機(jī)系統(tǒng)和人機(jī)交互界面。采用C/C++高級語言,完成通信程序的編寫,實(shí)現(xiàn)了電腦與PLC之間通過RS485串口的通信。同時(shí),上位機(jī)對視覺系統(tǒng)提取到的位姿信息進(jìn)行處理,軟件實(shí)現(xiàn)對關(guān)節(jié)變量、速度和加速度的求解,統(tǒng)一單位后,通過RS485發(fā)送給PLC。PLC對接收到的數(shù)據(jù)進(jìn)行解析處理,提取各軸運(yùn)動的實(shí)際位移量和速度值。運(yùn)動控制系統(tǒng)最終實(shí)現(xiàn)手動和自動兩種控制模式。實(shí)際測試表明,PLC通過RS485總線能夠?qū)崿F(xiàn)對4組伺服電機(jī)的獨(dú)立協(xié)調(diào)控制,并且該運(yùn)動控制系統(tǒng)性能穩(wěn)定,執(zhí)行效率高,能滿足工業(yè)現(xiàn)場高精度裝配的要求,具有很強(qiáng)的實(shí)用性。
[Abstract]:Under the background of rising labor cost, the demand for automation and intelligent products is expanding, and robots of different functional types are becoming more and more popular in enterprises. As one of the most important kinds of machinery in industrial field, assembly robot is used more and more widely in the process of enterprise production, and the design and development are becoming more and more mature. However, due to the influence of assembly precision, price and intelligence, the assembly robot is difficult to be accepted by the popular small and medium-sized enterprises. In many assembly workshops, it still relies on a large number of manual assembly products. Motion control system is the key system for assembly robot to realize complex assembly technology. In this paper, an economical, practical and intelligent motion control system is developed, which takes the visual positioning assembly robot as the research object, the practicability as the concept, the control precision as the core, and the precision assembly as the final goal. The purpose of automatic assembly with high precision and high efficiency is realized under the condition of random position and pose of workpiece and assembly point. Through detailed analysis of assembly process, the function of motion control system of assembly robot is clarified. On the basis of this, the selection of main hardware is completed, and the overall scheme design of motion control system is completed by combining the selected hardware and actual control requirements. PC is used as host computer, PLC is used as lower computer, communication between host computer and PLC is via RS485 serial port, In the form of RS485 bus, the control of four groups of servomotors is realized. According to the actual structure of the visual positioning assembly robot, the kinematics equation is established by using the first bar coordinate system, and the expression of the joint variable is obtained. By analyzing the existence of multiple solutions in inverse solutions, the optimal solution is selected by using the principle of "nearest solution". The path planning is accomplished by linear programming with parabola transition, and the final expression of velocity and acceleration is obtained. The servo driver is controlled by PR mode, combined with the characteristics of peripheral hardware and the actual functional requirements. This paper analyzes the I / O points and functions required by PLC, completes the selection of PLC and the allocation of I / O address, completes the design of electrical and pneumatic systems, and assembles the control cabinets. The program of PLC control system is designed by using trapezoid diagram and modular programming idea. The precise control of four groups of servomotors by RS485 bus is realized by PLC in Visual Studio 2012 development environment. Using MFC to develop upper computer system and man-machine interface. Using C / C language, the communication program is written, and the communication between computer and PLC is realized through RS485 serial port. At the same time, the upper computer processes the position and pose information extracted from the visual system, and the software realizes the solution of the joint variables, velocity and acceleration. After unifying the unit, it sends the received data to PLC.PLC through RS485 to analyze and process the received data. The actual displacement and velocity of each axis are extracted. The motion control system finally realizes two control modes, manual and automatic. The actual test shows that the RS485 bus can realize the independent coordinated control of the four groups of servo motors, and the motion control system is stable in performance, high in execution efficiency, and can meet the requirements of high precision assembly in the industrial field. It has strong practicability.
【學(xué)位授予單位】:陜西科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP273;TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 胥磊;;機(jī)器視覺技術(shù)的發(fā)展現(xiàn)狀與展望[J];設(shè)備管理與維修;2016年09期
2 計(jì)時(shí)鳴;黃希歡;;工業(yè)機(jī)器人技術(shù)的發(fā)展與應(yīng)用綜述[J];機(jī)電工程;2015年01期
3 洪祖太;王剛;;基于PLC的物料分揀控制系統(tǒng)設(shè)計(jì)[J];中國科技信息;2013年10期
4 武麗;;PLC在多點(diǎn)定位及往返系統(tǒng)中的控制研究[J];微計(jì)算機(jī)信息;2008年19期
5 曾繁玲;;運(yùn)動控制技術(shù)的發(fā)展與現(xiàn)狀[J];科技信息(學(xué)術(shù)研究);2008年06期
6 雷文華;;機(jī)器視覺及其應(yīng)用(系列講座) 第一講 機(jī)器視覺發(fā)展概述[J];應(yīng)用光學(xué);2006年05期
7 許果,王峻峰,何嶺松;一種基于SCARA機(jī)器人機(jī)械結(jié)構(gòu)設(shè)計(jì)[J];機(jī)械工程師;2005年04期
8 歐陽三泰,胡俊達(dá),周琴;PLC控制系統(tǒng)自動報(bào)警程序的設(shè)計(jì)方法[J];機(jī)床電器;2004年02期
9 王會良,任德志;基于經(jīng)濟(jì)型運(yùn)動控制卡的開發(fā)[J];洛陽工學(xué)院學(xué)報(bào);2002年04期
相關(guān)碩士學(xué)位論文 前10條
1 陶林;基于手勢識別的裝配機(jī)器人控制系統(tǒng)研發(fā)[D];廣東工業(yè)大學(xué);2016年
2 李曉;基于PLC的木工機(jī)械多軸運(yùn)動控制系統(tǒng)設(shè)計(jì)與研究[D];山東大學(xué);2015年
3 謝珂;基于單目圖像的裝配機(jī)器人固定視覺控制系統(tǒng)研究[D];湖南科技大學(xué);2014年
4 鄭國穗;SCARA平面關(guān)節(jié)式裝配機(jī)器人的設(shè)計(jì)與研究[D];陜西科技大學(xué);2014年
5 侯輝;碼垛機(jī)器人控制系統(tǒng)研究[D];鄭州大學(xué);2013年
6 劉文;機(jī)器人變坡口角度焊接工藝研究[D];江蘇科技大學(xué);2012年
7 蔣浩;基于PLC的工業(yè)機(jī)械手運(yùn)動控制系統(tǒng)設(shè)計(jì)[D];南京信息工程大學(xué);2012年
8 麻秦凡;基于運(yùn)動控制的珩磨機(jī)數(shù)控化研究[D];蘭州理工大學(xué);2012年
9 常玉萍;基于PLC的全自動點(diǎn)膠控制系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];武漢理工大學(xué);2012年
10 陳德仙;基于Modbus現(xiàn)場總線的智能配電控制系統(tǒng)研究與實(shí)現(xiàn)[D];浙江工業(yè)大學(xué);2009年
,本文編號:1856977
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1856977.html