天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

基于深度學習的緩變故障早期診斷及壽命預測

發(fā)布時間:2018-04-27 21:17

  本文選題:緩變故障 + 早期診斷 ; 參考:《山東大學學報(工學版)》2017年05期


【摘要】:為了克服傳統(tǒng)的早期微小故障診斷方法不能區(qū)分多個不同時刻發(fā)生故障的不足,提出一種將深度學習和PCA相結(jié)合的方法實現(xiàn)微小緩變故障早期診斷及壽命預測。對采集的數(shù)據(jù)進行深度學習實現(xiàn)逐層特征抽取,學習早期微小故障特征,建立微小緩變故障早期診斷模型,結(jié)合PCA方法將深度學習所抽取的高維故障特征向量集成為一個故障特征變量,根據(jù)歷史故障數(shù)據(jù)特征變量演化規(guī)律定義數(shù)據(jù)驅(qū)動的故障演變標尺,并通過指數(shù)型非線性擬合方法建立壽命預測模型。選取TE平臺數(shù)據(jù)進行算法有效性檢驗,并與其他算法對比,從而驗證了所提出算法的有效性。
[Abstract]:In order to overcome the shortcoming that the traditional early micro fault diagnosis method can not distinguish the fault at many different times, a method combining depth learning and PCA is proposed to realize the early diagnosis and life prediction of small and slow variable faults. The data are deeply studied to extract features from each layer, to learn the features of small faults in the early stage, and to establish a model for early diagnosis of small and slowly changing faults. Combined with PCA method, the high dimensional fault feature vector extracted by depth learning is integrated into a fault feature variable, and a data-driven fault evolution scale is defined according to the evolution rule of historical fault data feature variables. The life prediction model is established by exponential nonlinear fitting method. The data of te platform are selected to verify the validity of the algorithm, and compared with other algorithms, the validity of the proposed algorithm is verified.
【作者單位】: 河南大學計算機與信息工程學院;杭州電子科技大學自動化學院;
【基金】:國家自然科學基金資助項目(U1604158) 河南省教育廳科學技術(shù)研究重點資助項目(16A413002)
【分類號】:TP18;TP277

【相似文獻】

相關(guān)期刊論文 前2條

1 王興偉;胡風來;;基于灰色支持矢量機的金屬構(gòu)件壽命預測[J];中小企業(yè)管理與科技(下旬刊);2010年02期

2 周新遠;王海斗;楊大祥;盧曉亮;;涂層壽命預測的智能傳感研究進展[J];材料導報;2012年19期

,

本文編號:1812370

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1812370.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5ea23***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com