緊湊型大扭矩機(jī)器人關(guān)節(jié)結(jié)構(gòu)設(shè)計(jì)及優(yōu)化
本文選題:機(jī)器人關(guān)節(jié) + 有限元分析; 參考:《中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所》2016年碩士論文
【摘要】:空間在軌服務(wù)是目前空間技術(shù)發(fā)展的一個(gè)重點(diǎn)領(lǐng)域,空間在軌服務(wù)包括空間交會(huì)對(duì)接、在軌組裝、在軌維修等內(nèi)容。而空間機(jī)械臂以其良好的任務(wù)適應(yīng)性,在空間在軌服務(wù)領(lǐng)域獲得了極大的應(yīng)用。本文針對(duì)一種空間在軌組裝任務(wù),提出了一種利用九自由度機(jī)械臂完成任務(wù)的方案。并以此任務(wù)為導(dǎo)向,設(shè)計(jì)了一款緊湊型大扭矩模塊化的空間機(jī)械臂用機(jī)械臂關(guān)節(jié)。首先本文對(duì)在軌組裝任務(wù)進(jìn)行了分析,根據(jù)任務(wù)分析初步擬定了九自由度機(jī)械臂的相關(guān)參數(shù),并由該參數(shù)分解得到每個(gè)關(guān)節(jié)的設(shè)計(jì)指標(biāo)和功能要求。接著,根據(jù)關(guān)節(jié)的設(shè)計(jì)參數(shù),通過(guò)計(jì)算和查閱產(chǎn)品手冊(cè),完成了關(guān)節(jié)零部件的選型工作。在完成關(guān)節(jié)零部件的選型工作以后,以各零部件的幾何尺寸為基礎(chǔ),完成了該緊湊型大扭矩模塊化關(guān)節(jié)的所有結(jié)構(gòu)詳細(xì)設(shè)計(jì)工作。之后,根據(jù)機(jī)械臂在實(shí)際工作中的兩種典型受力狀態(tài),對(duì)完成初步設(shè)計(jì)的關(guān)節(jié)模型,進(jìn)行了靜力學(xué)的有限元分析,找出了關(guān)節(jié)模型中的薄弱處。分析計(jì)算結(jié)果表明,初步設(shè)計(jì)的關(guān)節(jié)模型中,諧波輸出軸存在剛度不足,走線孔存在應(yīng)力集中現(xiàn)象,用于關(guān)節(jié)連接的上伸板和下伸板存在剛度不足的問(wèn)題。然后根據(jù)分析的結(jié)果對(duì)諧波輸出軸和關(guān)節(jié)外殼進(jìn)行了改進(jìn)設(shè)計(jì)。對(duì)改進(jìn)后關(guān)節(jié)模型的有限元分析結(jié)果表明,諧波輸出軸最大應(yīng)力下降了40%,剛度提升了28.8%,關(guān)節(jié)間連接板的變形量減小了28.9%,以上結(jié)果說(shuō)明改進(jìn)措施效果顯著。最后本文設(shè)計(jì)了一款輸出扭矩為150N·m的擺線針輪行星減速器。為了減小體積,將擺線針輪行星減速器常見(jiàn)的懸臂式針齒改為了臥枕式針齒。然后,根據(jù)新的針齒結(jié)構(gòu),設(shè)計(jì)了一款擺線針輪減速器。之后,針對(duì)擺線針輪行星減速器的幾個(gè)重要參數(shù)和臥枕式針齒的結(jié)構(gòu)特點(diǎn),推導(dǎo)出了新的擺線針輪行星減速器優(yōu)化目標(biāo)函數(shù)和邊界條件,利用MATLAB的遺傳算法工具箱,進(jìn)行優(yōu)化,最后使用有限元分析軟件對(duì)減速器進(jìn)行分析,以驗(yàn)證其結(jié)構(gòu)強(qiáng)度是否滿足要求。
[Abstract]:Space in-orbit service is an important field of space technology development at present. Space on-orbit service includes space rendezvous and docking, on-orbit assembly, on-orbit maintenance and so on. Space manipulator has been widely used in the field of space orbit service due to its good mission adaptability. In this paper, a scheme of using nine degrees of freedom robotic arm to accomplish the task is proposed for a space on-orbit assembly task. Based on this task, a compact large torque modularized space manipulator joint is designed. Firstly, the on-orbit assembly task is analyzed, and the parameters of the nine-degree-of-freedom manipulator are preliminarily worked out according to the task analysis, and the design indexes and functional requirements of each joint are obtained by decomposing the parameters. Then, according to the design parameters of joint, the selection of joint parts is completed by calculating and consulting the product manual. After completing the selection of joint parts, based on the geometric dimensions of each component, the detailed structural design of the compact large torque modular joint is completed. Then, according to the two typical mechanical states of the manipulator in the actual work, the finite element analysis of statics is carried out to find out the weakness of the joint model. The analysis and calculation results show that the stiffness of the harmonic output shaft is insufficient, the stress concentration phenomenon exists in the line hole, and the stiffness of the upper and lower extension plates for joint connection is insufficient in the preliminary design joint model. Then the harmonic output shaft and joint shell are improved according to the analysis results. The finite element analysis results of the improved joint model show that the maximum stress of the harmonic output shaft decreases by 40 percent, the stiffness increases by 28.8and the deformation of the joint joint plate decreases by 28.9. the above results show that the effect of the improved measures is remarkable. Finally, a cycloidal needle wheel planetary reducer with output torque of 150 nm is designed. In order to reduce the volume, the common cantilever pin teeth of cycloidal pin gear planetary reducer are changed to the horizontal pillow type needle teeth. Then, according to the new needle tooth structure, a cycloidal gear reducer is designed. Then, according to several important parameters of cycloidal pin gear planetary reducer and the structural characteristics of the supine pin gear, the optimization objective function and boundary condition of the cycloid pin planetary reducer are derived, and the optimization is carried out by using the genetic algorithm toolbox of MATLAB. Finally, finite element analysis software is used to analyze the reducer to verify whether its structural strength meets the requirements.
【學(xué)位授予單位】:中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許立新;楊玉虎;;一種擺線針輪傳動(dòng)多齒嚙合接觸特性分析方法[J];中國(guó)機(jī)械工程;2016年10期
2 李亞瑋;黃晉英;;八自由度機(jī)械臂正運(yùn)動(dòng)學(xué)及工作空間分析[J];機(jī)械傳動(dòng);2016年04期
3 吳素珍;何衛(wèi)東;;RV針擺傳動(dòng)齒面接觸強(qiáng)度非線性分析[J];鄭州大學(xué)學(xué)報(bào)(工學(xué)版);2015年04期
4 冉毅;杜雪松;孫章棟;郭沛霖;;RV減速器的擺線針輪副接觸分析[J];新型工業(yè)化;2014年11期
5 李劍鋒;菅迎賓;;臥枕式針齒結(jié)構(gòu)的擺線傳動(dòng)受力分析[J];機(jī)械設(shè)計(jì)與制造;2014年10期
6 西慶坤;盧萬(wàn)強(qiáng);曹素兵;;基于遺傳算法的擺線針輪行星減速器優(yōu)化設(shè)計(jì)[J];機(jī)械傳動(dòng);2014年09期
7 陳鵬飛;秦偉;徐波;;擺線針輪嚙合傳動(dòng)的等效接觸扭轉(zhuǎn)剛度計(jì)算[J];機(jī)械科學(xué)與技術(shù);2014年04期
8 劉宏;譚益松;劉伊威;介黨陽(yáng);高凱;蔡鶴皋;;Development of Chinese large-scale space end-effector[J];Journal of Central South University of Technology;2011年03期
9 張凱鋒;周暉;溫慶平;桑瑞鵬;;空間站機(jī)械臂研究[J];空間科學(xué)學(xué)報(bào);2010年06期
10 于明;徐承妍;;基于MATLAB的擺線針輪傳動(dòng)的優(yōu)化設(shè)計(jì)[J];現(xiàn)代制造工程;2010年08期
相關(guān)博士學(xué)位論文 前2條
1 田士濤;分段約束阻尼層結(jié)構(gòu)及其在空間機(jī)械臂減振中的應(yīng)用[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2016年
2 丁淵明;6R型串聯(lián)弧焊機(jī)器人結(jié)構(gòu)優(yōu)化及其控制研究[D];浙江大學(xué);2009年
相關(guān)碩士學(xué)位論文 前4條
1 孔祥然;機(jī)械臂模塊化關(guān)節(jié)設(shè)計(jì)及其輸出特性研究[D];北京郵電大學(xué);2015年
2 余超;基于遺傳算法的擺線針輪減速器模糊穩(wěn)健設(shè)計(jì)[D];南華大學(xué);2011年
3 劉鳴熙;擺線針輪傳動(dòng)與小型RV二級(jí)減速器的研究[D];北京交通大學(xué);2008年
4 張海峰;小型擺線齒輪行星傳動(dòng)的設(shè)計(jì)與研究[D];南京理工大學(xué);2004年
,本文編號(hào):1803667
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1803667.html