離散事件觸發(fā)通訊機(jī)制下NNCS主—被動(dòng)混合魯棒容錯(cuò)控制研究
本文選題:非線(xiàn)性網(wǎng)絡(luò)化控制系統(tǒng) + 主-被動(dòng)混合魯棒容錯(cuò)控制; 參考:《蘭州理工大學(xué)》2017年碩士論文
【摘要】:近年來(lái),網(wǎng)絡(luò)控制早已成為控制領(lǐng)域中的一個(gè)熱門(mén)研究方向。然而,網(wǎng)絡(luò)化控制系統(tǒng)(Networked Control System,NCS)中存在的問(wèn)題是比較復(fù)雜的,如:網(wǎng)絡(luò)誘導(dǎo)時(shí)延、數(shù)據(jù)丟包、模型不確定性、有限網(wǎng)絡(luò)資源的浪費(fèi)等現(xiàn)象的存在以及隨時(shí)可能發(fā)生的各種故障,均會(huì)導(dǎo)致系統(tǒng)性能下降甚至使系統(tǒng)變得不穩(wěn)定。除此以外,由于在實(shí)際的工業(yè)系統(tǒng)中或多或少都存在著非線(xiàn)性特性,因此,通過(guò)容錯(cuò)控制設(shè)計(jì)使非線(xiàn)性NCS(Nonlinear NCS,NNCS)具有較高的安全可靠性,具有深遠(yuǎn)的意義,F(xiàn)有的NNCS容錯(cuò)控制研究中,基本可以分為兩大類(lèi):被動(dòng)容錯(cuò)控制(Passive Fault-Tolerant Control,PFTC)和主動(dòng)容錯(cuò)控制(Active Fault-Tolerant Control,AFTC)。盡管這兩種方法有各自獨(dú)特的優(yōu)點(diǎn),但是前者的保守性較大,無(wú)法對(duì)未知故障進(jìn)行有效容錯(cuò),而后者在進(jìn)行控制器重組/重構(gòu)時(shí),無(wú)法保證系統(tǒng)在此期間的穩(wěn)定性。除此以外,現(xiàn)存成果大多采用“時(shí)間觸發(fā)通訊機(jī)制”(Periodic Time-Triggered Communication Scheme,PTTCS),數(shù)據(jù)的傳輸間隔等周期,這一特性無(wú)疑會(huì)造成無(wú)效數(shù)據(jù)的傳輸,嚴(yán)重浪費(fèi)本來(lái)就有限的網(wǎng)絡(luò)資源,更加加劇網(wǎng)絡(luò)誘導(dǎo)時(shí)延和丟包現(xiàn)象的發(fā)生;诖,本文以一類(lèi)具有時(shí)變時(shí)延和外界有限能量擾動(dòng)的不確定NNCS為研究對(duì)象,采用更加節(jié)約資源的“離散事件觸發(fā)通訊機(jī)制”(Discrete Event-Triggered Communication Scheme,DETCS),在執(zhí)行器任意失效故障情形下,從系統(tǒng)建模、觀(guān)測(cè)器與控制器的設(shè)計(jì)與分析、DETCS與控制器協(xié)同設(shè)計(jì)等方面研究了DETCS下NNCS主-被動(dòng)混合魯棒容錯(cuò)控制問(wèn)題。主要研究?jī)?nèi)容包括以下幾個(gè)方面:1)DETCS下閉環(huán)故障NNCS建模本文引入一種與系統(tǒng)狀態(tài)息息相關(guān)的DETCS,同時(shí)具體考慮到網(wǎng)絡(luò)誘導(dǎo)時(shí)延和外界有限能量擾動(dòng)的實(shí)際存在,以T-S模糊模型為基礎(chǔ),分別建立了標(biāo)稱(chēng)、不確定以及不確定受擾閉環(huán)故障NNCS模型。2)NNCS主-被動(dòng)混合容錯(cuò)控制與DETCS協(xié)同設(shè)計(jì)研究在上述所建立模型的基礎(chǔ)上,利用并行分布補(bǔ)償方案(Parallel Distributed Compensation,PDC)以及構(gòu)造適當(dāng)?shù)腖yapunov-Krasovskii泛函等方法,推證出了在DETCS下使NNCS具有完整性、魯棒容錯(cuò)以及魯棒H_∞容錯(cuò)的時(shí)滯/事件依賴(lài)充分條件;同時(shí)以線(xiàn)性矩陣不等式(Linear Matrix Inequality,LMI)形式給出了主-被動(dòng)混合容錯(cuò)控制器與DETCS協(xié)同設(shè)計(jì)的求解方法,并基于H_∞控制思想設(shè)計(jì)了故障檢測(cè)觀(guān)測(cè)器(Fault Detection Observer,FDO),以實(shí)現(xiàn)對(duì)故障的在線(xiàn)檢測(cè);隨后設(shè)計(jì)了PFTC和AFTC,使得在發(fā)生已知故障類(lèi)型時(shí),系統(tǒng)能夠維持自身的穩(wěn)定性,在發(fā)生未知故障類(lèi)型初期階段,通過(guò)PFTC的作用能夠降低系統(tǒng)性能下降的速度,為FDD子系統(tǒng)檢測(cè)準(zhǔn)確的故障信息以及AFTC的重組/重構(gòu)贏得寶貴的時(shí)間,一旦得到準(zhǔn)確的故障信息,AFTC將立即重構(gòu)新的控制器用以補(bǔ)償未知故障對(duì)系統(tǒng)性能帶來(lái)的影響,進(jìn)而維持系統(tǒng)的穩(wěn)定性。3)DETCS下不確定NNCS主-被動(dòng)混合魯棒H_∞容錯(cuò)控制器無(wú)沖擊切換研究考慮到在不同控制器之間進(jìn)行切換時(shí),由于控制信號(hào)不匹配而容易影響控制器的性能,進(jìn)而影響到系統(tǒng)安全的問(wèn)題。因此,在NNCS主-被動(dòng)混合魯棒H_∞容錯(cuò)控制器的設(shè)計(jì)中需要考慮重構(gòu)控制器的平滑切換問(wèn)題。通過(guò)引入適當(dāng)?shù)钠交袚Q函數(shù),實(shí)現(xiàn)了切換瞬間控制器信號(hào)的匹配,減小了切換時(shí)的抖動(dòng)以及跳變現(xiàn)象,從而保證了在執(zhí)行器任意失效故障情況下系統(tǒng)的安全性。4)DETCS下NNCS主-被動(dòng)混合容錯(cuò)控制仿真程序的設(shè)計(jì)與實(shí)現(xiàn)針對(duì)上述研究,仿真結(jié)果表明采用文中所設(shè)計(jì)的FDO可以準(zhǔn)確地檢測(cè)出故障信息;通過(guò)對(duì)AFTC、PFTC和主-被動(dòng)混合容錯(cuò)控制器的效果比較,發(fā)現(xiàn)文中所設(shè)計(jì)的混合容錯(cuò)控制器的性能優(yōu)于兩者中的任何一個(gè):即對(duì)已知/未知故障類(lèi)型的故障均能實(shí)現(xiàn)有效容錯(cuò);平滑切換函數(shù)的恰當(dāng)選擇實(shí)現(xiàn)了控制器之間的“無(wú)沖擊”切換;除此之外,事件觸發(fā)條件的引入大大節(jié)約了有限的網(wǎng)絡(luò)資源,提高了網(wǎng)絡(luò)資源的利用效率。
[Abstract]:In recent years, network control has been a hot research direction in the field of control. However, the problems in Networked Control System (NCS) are complicated, such as network induced delay, data packet loss, model uncertainty, the waste of limited network resources and so on, and may occur at any time. All kinds of faults can cause the degradation of the system performance and even make the system unstable. In addition, because of the nonlinear characteristics more or less in the actual industrial system, the design of fault-tolerant control makes the nonlinear NCS (Nonlinear NCS, NNCS) have high security reliability and far-reaching significance. The existing NNCS fault tolerance is of great significance. In control research, it can be divided into two main categories: Passive Fault-Tolerant Control (PFTC) and active fault-tolerant control (Active Fault-Tolerant Control, AFTC). Although these two methods have their own unique advantages, the former is conservatively conservative and can not effectively fault the unknown fault, and the latter is under control. In addition, most of the existing achievements are Periodic Time-Triggered Communication Scheme (PTTCS) and the interval of data transmission. This feature will undoubtedly cause the transmission of invalid data and seriously waste the originally limited network. Based on this, this paper uses a class of uncertain NNCS with time-varying delay and external limited energy disturbance as the research object, and uses the "discrete event trigger communication mechanism" (Discrete Event-Triggered Communication Scheme, DETCS), which is more resource saving, and is arbitrary in the actuator. In the case of failure failure, from the aspects of system modeling, the design and analysis of the observer and controller, the cooperative design of the DETCS and the controller, the problem of NNCS main passive hybrid robust fault-tolerant control is studied under DETCS. The main research contents include the following aspects: 1) the closed-loop fault NNCS modeling under DETCS is introduced in this paper, which is closely related to the state of the system. DETCS, at the same time, taking into account the actual existence of network induced delay and the external finite energy disturbance, based on the T-S fuzzy model, the paper establishes the nominal, uncertain and uncertain NNCS model.2 of the closed loop fault NNCS model, and the research on the NNCS master passive hybrid fault-tolerant control and the DETCS collaborative design is based on the above model. The parallel distribution compensation scheme (Parallel Distributed Compensation, PDC) and the construction of appropriate Lyapunov-Krasovskii functional methods have proved the time delay / event dependent sufficient conditions for NNCS with integrity, robust fault tolerance and robust H_ infinity fault-tolerant under DETCS; at the same time, linear matrix inequalities (Linear Matrix Inequality, LMI) form are also given. The method of solving the cooperative design of the master passive hybrid fault-tolerant controller and DETCS is given, and the fault detection observer (Fault Detection Observer, FDO) is designed based on the H_ control idea to realize the on-line detection of the fault. Then, the PFTC and AFTC are designed to enable the system to maintain its own stability when the generator is given a known fault type. In the initial stage of the unknown fault type, the speed of the system performance degradation can be reduced by the role of PFTC, which will win valuable time for the FDD subsystem to detect accurate fault information and the reconfiguration / reconfiguration of AFTC. Once the accurate fault information is obtained, AFTC will immediately restructure the new controller to compensate the unknown fault to the system. The impact that can bring, and then maintain the stability of the system.3) under DETCS, the uncertain NNCS passive hybrid robust H_ infinity robust fault-tolerant controller without impact switching is considered to affect the performance of the controller because of the mismatch of the control signals, thus affecting the security of the system. Therefore, in NNCS The smooth switching problem of the reconfigurable controller is considered in the design of the master passive hybrid robust H_ fault-tolerant controller. By introducing a suitable smooth switching function, the matching of the controller signals is realized, the jitter and the jump phenomenon are reduced, and the system is guaranteed under the arbitrary failure of the actuator. Security.4) the design and implementation of the NNCS main passive hybrid fault-tolerant control simulation program under DETCS is designed and implemented. The simulation results show that the fault information can be detected accurately by the FDO designed in this paper. The hybrid fault-tolerant controller designed in this paper is found by comparing the effect of AFTC, PFTC and the main passive hybrid fault-tolerant controller. Performance is better than any one of the two: fault tolerance for known / unknown fault types can be effectively fault-tolerant, and the proper selection of smooth switching functions realizes "no impact" switching between controllers; in addition, the introduction of event triggering conditions greatly saves the limited network resources and improves the utilization efficiency of network resources.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王君;李淑真;李煒;;NCS的事件觸發(fā)通訊機(jī)制與主被動(dòng)混合魯棒容錯(cuò)控制設(shè)計(jì)[J];蘭州理工大學(xué)學(xué)報(bào);2016年06期
2 李亞潔;李煒;;網(wǎng)絡(luò)化控制系統(tǒng)α/H_∞容錯(cuò)控制與網(wǎng)絡(luò)通訊的協(xié)同設(shè)計(jì)[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2016年06期
3 智月明;姜順;潘豐;;非線(xiàn)性系統(tǒng)的非脆弱H_∞容錯(cuò)控制[J];控制工程;2016年07期
4 劉健辰;時(shí)光;;基于事件觸發(fā)傳輸機(jī)制的非線(xiàn)性系統(tǒng)模糊H_∞控制[J];控制與決策;2016年09期
5 劉艷;潘豐;;丟包網(wǎng)絡(luò)化控制系統(tǒng)非脆弱量化H-_∞控制[J];信息與控制;2016年03期
6 賈新春;郝曉蕾;張大偉;;事件觸發(fā)通訊機(jī)制下線(xiàn)性系統(tǒng)的網(wǎng)絡(luò)化動(dòng)態(tài)輸出反饋H_∞控制[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年02期
7 Jin-liang LIU;Zhou GU;Shu-min FEI;;Reliable Control for Nonlinear Systems with Stochastic Actuators Fault and Random Delays Through a T-S Fuzzy Model Approach[J];Acta Mathematicae Applicatae Sinica;2016年02期
8 李煒;閻坤;李亞潔;;事件觸發(fā)NNCS魯棒H_∞保性能容錯(cuò)與通訊協(xié)同設(shè)計(jì)[J];系統(tǒng)仿真學(xué)報(bào);2016年05期
9 龍雨強(qiáng);凌強(qiáng);鄭偉;;基于事件觸發(fā)的網(wǎng)絡(luò)化控制系統(tǒng)的L_2穩(wěn)定性分析[J];信息與控制;2016年02期
10 李煒;翟鵬飛;申富媛;;網(wǎng)絡(luò)化控制系統(tǒng)的新型事件觸發(fā)通信與魯棒廣義H_2/H_∞容錯(cuò)協(xié)同設(shè)計(jì)[J];上海應(yīng)用技術(shù)學(xué)院學(xué)報(bào)(自然科學(xué)版);2016年01期
相關(guān)博士學(xué)位論文 前6條
1 杜黎龍;時(shí)延系統(tǒng)故障診斷及容錯(cuò)控制研究[D];華北電力大學(xué);2015年
2 劉于之;不確定網(wǎng)絡(luò)控制系統(tǒng)魯棒分析與事件觸發(fā)控制研究[D];大連理工大學(xué);2015年
3 沈啟坤;基于自適應(yīng)控制技術(shù)的故障診斷與容錯(cuò)控制研究[D];南京航空航天大學(xué);2015年
4 姜順;網(wǎng)絡(luò)化控制系統(tǒng)的輸出反饋控制與故障診斷研究[D];華中科技大學(xué);2013年
5 張果;基于T-S模型的非線(xiàn)性系統(tǒng)的模糊控制[D];西安電子科技大學(xué);2009年
6 陳s,
本文編號(hào):1798422
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1798422.html