改進(jìn)的螢火蟲(chóng)算法及其在PID控制器參數(shù)整定中的應(yīng)用
本文選題:PID控制器 切入點(diǎn):參數(shù)整定 出處:《安徽大學(xué)》2017年碩士論文
【摘要】:在當(dāng)今的工業(yè)過(guò)程控制中,PID(Proportional Integral Differential)控制器由于結(jié)構(gòu)簡(jiǎn)單、易實(shí)現(xiàn)、可靠性高、魯棒性能高等特點(diǎn),因此被廣泛的應(yīng)用。根據(jù)相關(guān)的統(tǒng)計(jì)資料顯示,實(shí)際的工業(yè)過(guò)程中,使用PID控制思想的控制器占95%以上。眾所周知,PID控制器性能的優(yōu)劣直接與PID控制器的參數(shù)相關(guān)聯(lián)。然而隨著現(xiàn)代工業(yè)技術(shù)的飛速發(fā)展,工業(yè)控制系統(tǒng)變的越來(lái)越復(fù)雜,傳統(tǒng)的整定PID控制器參數(shù)的算法已經(jīng)不能很好的適應(yīng)于現(xiàn)代越來(lái)越復(fù)雜的控制問(wèn)題。但隨著人工智能領(lǐng)域的不斷發(fā)展和計(jì)算機(jī)技術(shù)不斷向自動(dòng)化領(lǐng)域的滲透,涌現(xiàn)了大量智能算法整定P1D控制器參數(shù)的方法。螢火蟲(chóng)算法屬于智能優(yōu)化算法中的一種,因其并行性、自組織、易實(shí)現(xiàn)、分布式和魯棒性等特點(diǎn)被廣泛使用。本文將用改進(jìn)的螢火蟲(chóng)算法(Glowworm Swarm Optimization,GSO)整定PID控制器參數(shù),研究的主要內(nèi)容概述如下:1、本文提出了一種基于導(dǎo)向機(jī)制和自適應(yīng)步長(zhǎng)的螢火蟲(chóng)算法(Based on Directed mechanism and Adaptive-step mechanism GSO,D-AGSO)。一方面,本文在算法中引入了自適應(yīng)步長(zhǎng)機(jī)制,使步長(zhǎng)可以在算法迭代前期保持較大值,以便可以全局內(nèi)搜索最優(yōu)解,防止算法過(guò)早成熟,陷入局部最優(yōu)。在迭代后期,使步長(zhǎng)可以保持較小值,防止算法跳過(guò)最優(yōu)解或者出現(xiàn)震蕩現(xiàn)象,更加有利于精確尋找最優(yōu)解;另一方面,對(duì)于基本的螢火蟲(chóng)算法,如果螢火蟲(chóng)個(gè)體在其自身動(dòng)態(tài)決策域半徑內(nèi)沒(méi)有找到比自己更亮的螢火蟲(chóng),則這類螢火蟲(chóng)將不確定隨機(jī)移動(dòng)。因此,這類螢火蟲(chóng)雖然付出了大量計(jì)算代價(jià),但卻沒(méi)有發(fā)生較好的位置移動(dòng),并且存在導(dǎo)致算法陷入局部最優(yōu)的危險(xiǎn)且不利于算法的快速收斂。為了減小這種算法缺陷,本文針對(duì)這類的螢火蟲(chóng)個(gè)體,采取了導(dǎo)向性的移動(dòng)策略,以加快迭代速度和求解精度。為了驗(yàn)證改進(jìn)算法的有效性與可行性,本文算法與基本的螢火蟲(chóng)算法、自適應(yīng)步長(zhǎng)的螢火蟲(chóng)算法(Enhanced Glowworm Swarm Optimization Algorithm,EGSO)、基于熒光因子與覓食行為的螢火蟲(chóng)算法(Foraging-behavior Adaptive-step Glowworm Swarm Optimization Algorithm,FA-GSO)進(jìn)行實(shí)驗(yàn)比較,結(jié)果證明本文改進(jìn)的螢火蟲(chóng)算法具有較優(yōu)的尋優(yōu)性能。2、本文提出了基于一種新的改進(jìn)的螢火蟲(chóng)算法整定PID控制器參數(shù)的方法,并且使用MATLAB中的Simulink工具建立PID控制器仿真模型,對(duì)本文提出的方法進(jìn)行仿真實(shí)驗(yàn)。本文使用四種不同類型的被控對(duì)象來(lái)驗(yàn)證改進(jìn)的螢火蟲(chóng)算法整定PID控制器參數(shù)的方法的性能,并且本文引入經(jīng)典Z-N公式整定方法、粒子群算法整定方法、差分進(jìn)化整定方法與本文的算法進(jìn)行比較,仿真結(jié)果證明本文提出的算法取得了較好的控制效果。3、本文使用改進(jìn)的ITAE評(píng)價(jià)函數(shù)來(lái)驗(yàn)證本文提出的算法,仿真實(shí)驗(yàn)證明通過(guò)改變?cè)u(píng)價(jià)函數(shù)中的性能權(quán)重系數(shù),本文算法可有效的使PID控制器偏重于某一特定指標(biāo)性能。因此本文算法可以整定出工業(yè)控制過(guò)程中所需要的具有針對(duì)性的PID控制器。
[Abstract]:In the industrial process control, PID (Proportional Integral Differential) controller has the advantages of simple structure, easy realization, high reliability, high robustness, it has been widely applied. According to the statistics show that the real industrial process, the controller can control the thought of PID accounted for more than 95%. As everyone knows, associated the performance of the PID controller and the PID controller parameters directly. However, with the rapid development of modern industrial technology, industrial control systems are becoming more and more complex, the traditional PID controller parameter tuning algorithm has not well adapted to the control problem more complex in modern more. But with the continuous development of computer technology and artificial intelligence the field continues to permeate the field of automation, the emergence of a large number of intelligent algorithm method for tuning parameters of P1D controller. The firefly algorithm belongs to intelligent optimization algorithm In one, because of its parallelism, self-organization, easy to realize, the characteristics of distributed and robust is widely used. This paper will use the firefly algorithm (Glowworm Swarm Optimization, GSO) PID controller tuning parameters, the main contents of the study are as follows: 1, this paper presents a firefly the guide mechanism and algorithm based on adaptive step (Based on Directed mechanism and Adaptive-step mechanism GSO, D-AGSO). On the one hand, this paper introduces adaptive step mechanism in the algorithm, the algorithm in the early iteration step can keep larger values, so that you can search global optimal solution, to prevent the algorithm premature, falling into the local optimum. In the iteration later, the step can maintain a smaller value, to prevent the algorithm skip the optimal solution or shock phenomenon, more conducive to the exact optimal solution; on the other hand, the firefly algorithm basic, if Firefly individuals did not find more than their bright fireflies in its own dynamic decision domain radius, then the firefly will not determine the random movement. Therefore, this kind of firefly although pay a lot of computation cost, but did not move a good position and fast convergence of the algorithm into a local danger guide the best and not conducive to the algorithm. This algorithm in order to reduce defects, according to this kind of firefly individual, take mobile strategy oriented, to accelerate the convergence speed and accuracy and feasibility. In order to verify the effectiveness of the improved algorithm, the firefly algorithm in this paper and the basic of the firefly algorithm adaptive step (Enhanced Glowworm Swarm Optimization Algorithm, EGSO), firefly algorithm based on fluorescence factor and foraging behavior (Foraging-behavior Adaptive-step Glowworm Swarm Optimization Algorit HM, FA-GSO) were compared. Results show that the improved firefly algorithm has better optimization performance of.2, this paper proposed a new method to improve the firefly algorithm tuning parameters of PID controller based on MATLAB, and use the Simulink tools to build PID controller simulation model, the simulation experiment of the the method proposed in this paper. The performance of the four different types of objects to verify the firefly algorithm to improve the method of tuning the parameters of PID controller, and introduced the classical Z-N formula tuning method, particle swarm optimization tuning method, compare the differential evolution setting method and the simulation results show that this algorithm. The proposed algorithm has.3 better control effect, this paper uses ITAE evaluation function to verify the improved algorithm proposed in this paper, simulation results show that by changing the performance evaluation function in the Weight coefficient, this algorithm can effectively make the PID controller bias the performance of a specific index. Therefore, this algorithm can set the pertinent PID controller needed in the process of industrial control.
【學(xué)位授予單位】:安徽大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李恒;郭星;李煒;;一種改進(jìn)的變步長(zhǎng)的螢火蟲(chóng)算法[J];微電子學(xué)與計(jì)算機(jī);2016年10期
2 程美英;倪志偉;朱旭輝;;螢火蟲(chóng)優(yōu)化算法理論研究綜述[J];計(jì)算機(jī)科學(xué);2015年04期
3 唐少虎;劉小明;;一種改進(jìn)的自適應(yīng)步長(zhǎng)的人工螢火蟲(chóng)算法[J];智能系統(tǒng)學(xué)報(bào);2015年03期
4 郁書(shū)好;楊善林;蘇守寶;;一種改進(jìn)的變步長(zhǎng)螢火蟲(chóng)優(yōu)化算法[J];小型微型計(jì)算機(jī)系統(tǒng);2014年06期
5 曾冰;李明富;張翼;;基于改進(jìn)螢火蟲(chóng)算法的裝配序列規(guī)劃方法[J];計(jì)算機(jī)集成制造系統(tǒng);2014年04期
6 陳東寧;張國(guó)峰;姚成玉;張瑞星;;細(xì)菌群覓食優(yōu)化算法及PID參數(shù)優(yōu)化應(yīng)用[J];中國(guó)機(jī)械工程;2014年01期
7 李永林;葉春明;;基于螢火蟲(chóng)算法的零等待流水線調(diào)度優(yōu)化[J];機(jī)械設(shè)計(jì)與研究;2013年06期
8 吳斌;錢存華;倪衛(wèi)紅;;螢火蟲(chóng)群優(yōu)化算法在越庫(kù)調(diào)度問(wèn)題中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2013年06期
9 吳斌;崔志勇;倪衛(wèi)紅;;具有混合群智能行為的螢火蟲(chóng)群優(yōu)化算法研究[J];計(jì)算機(jī)科學(xué);2012年05期
10 劉洪霞;周永權(quán);;一種基于模式搜索算子的人工螢火蟲(chóng)優(yōu)化算法[J];小型微型計(jì)算機(jī)系統(tǒng);2011年10期
,本文編號(hào):1715152
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1715152.html