基于最優(yōu)高斯隨機(jī)游走和個(gè)體篩選策略的差分進(jìn)化算法
本文選題:差分進(jìn)化 切入點(diǎn):無約束優(yōu)化 出處:《控制與決策》2016年08期
【摘要】:針對(duì)差分進(jìn)化算法開發(fā)能力較差的問題,提出一種具有快速收斂的新型差分進(jìn)化算法.首先,利用最優(yōu)高斯隨機(jī)游走策略提高算法的開發(fā)能力;然后,采用基于個(gè)體優(yōu)化性能的簡(jiǎn)化交叉變異策略實(shí)現(xiàn)種群的進(jìn)化操作以加強(qiáng)其局部搜索能力;最后,通過個(gè)體篩選策略進(jìn)一步提高算法的探索能力以避免陷入局部最優(yōu).12個(gè)標(biāo)準(zhǔn)測(cè)試函數(shù)和兩種帶約束的工程優(yōu)化問題的實(shí)驗(yàn)結(jié)果表明,所提出的算法在收斂速度、算法可靠性及收斂精度方面均優(yōu)于EPSDE、Sa DE、JADE、BSA、Co Bi DE、GSA和ABC等算法,在加強(qiáng)算法探索能力的同時(shí)能夠有效地提高算法的開發(fā)能力.
[Abstract]:In order to solve the problem of poor development ability of differential evolution algorithm, a new differential evolution algorithm with fast convergence is proposed. Firstly, the optimal Gao Si random walk strategy is used to improve the development ability of the algorithm. A simplified cross-mutation strategy based on individual optimization performance is used to realize the evolutionary operation of the population in order to enhance its local search ability. Finally, The search ability of the algorithm is further improved by individual screening strategy to avoid falling into local optimum. The experimental results of 12 standard test functions and two constrained engineering optimization problems show that the proposed algorithm is convergent at the rate of convergence. The reliability and convergence accuracy of the algorithm are superior to those of the EPSDEE / sa DEA JADEY BSACO Bi DEGSA and ABC algorithms, which can enhance the ability to explore the algorithm and improve the development ability of the algorithm effectively at the same time.
【作者單位】: 空軍工程大學(xué)航空航天工程學(xué)院;
【基金】:航空科學(xué)基金項(xiàng)目(20105196016) 中國(guó)博士后科學(xué)基金項(xiàng)目(2012M521807)
【分類號(hào)】:TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳燕玲;盧建剛;孫優(yōu)賢;;基于免疫原理的差分進(jìn)化[J];控制與決策;2007年11期
2 楊啟文;蔡亮;薛云燦;;差分進(jìn)化算法綜述[J];模式識(shí)別與人工智能;2008年04期
3 許小健;黃小平;錢德玲;;自適應(yīng)加速差分進(jìn)化算法[J];復(fù)雜系統(tǒng)與復(fù)雜性科學(xué);2008年01期
4 寧桂英;周永權(quán);;基于優(yōu)進(jìn)策略的新差分進(jìn)化算法動(dòng)力學(xué)模型參數(shù)的估計(jì)[J];計(jì)算機(jī)與應(yīng)用化學(xué);2008年05期
5 譚躍;譚冠政;涂立;;一種新的混沌差分進(jìn)化算法[J];計(jì)算機(jī)工程;2009年11期
6 王培崇;錢旭;王月;虎曉紅;;差分進(jìn)化計(jì)算研究綜述[J];計(jì)算機(jī)工程與應(yīng)用;2009年28期
7 肖術(shù)駿;朱學(xué)峰;;一種改進(jìn)的快速高效的差分進(jìn)化算法[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年11期
8 周蕭;王萬良;徐新黎;;解決作業(yè)車間調(diào)度問題的混合差分進(jìn)化算法[J];輕工機(jī)械;2010年05期
9 王艷宜;;改進(jìn)差分進(jìn)化算法及其應(yīng)用[J];機(jī)械設(shè)計(jì)與研究;2010年05期
10 張照生;羅健旭;;基于差分進(jìn)化算法的模糊神經(jīng)網(wǎng)絡(luò)控制器[J];計(jì)算機(jī)與應(yīng)用化學(xué);2011年12期
相關(guān)會(huì)議論文 前10條
1 陸絲馨;肖健梅;王錫淮;;基于改進(jìn)差分進(jìn)化算法的艦船電網(wǎng)重構(gòu)[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年
2 樓洋;李均利;陳剛;;基于個(gè)體排序的差分進(jìn)化算法[A];'2010系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2010年
3 張倩;李海港;;多目標(biāo)問題的差分進(jìn)化算法研究[A];2009年中國(guó)智能自動(dòng)化會(huì)議論文集(第一分冊(cè))[C];2009年
4 裴振奎;劉真;趙艷麗;;差分進(jìn)化算法在多目標(biāo)路徑規(guī)劃中的應(yīng)用[A];中國(guó)運(yùn)籌學(xué)會(huì)模糊信息與模糊工程分會(huì)第五屆學(xué)術(shù)年會(huì)論文集[C];2010年
5 劉國(guó)帥;楊侃;陳靜;周景舒;周冉;鄭姣;;差分進(jìn)化算法在三峽電站廠內(nèi)經(jīng)濟(jì)運(yùn)行中的應(yīng)用[A];中國(guó)水文科技新發(fā)展——2012中國(guó)水文學(xué)術(shù)討論會(huì)論文集[C];2012年
6 劉瀟;桂衛(wèi)華;王雅琳;王曉麗;陽春華;;一種改進(jìn)的多目標(biāo)差分進(jìn)化算法研究[A];中國(guó)自動(dòng)化學(xué)會(huì)中南六。▍^(qū))2010年第28屆年會(huì)·論文集[C];2010年
7 趙娟;蔡濤;鄧方;楊紅偉;;基于改進(jìn)差分進(jìn)化算法的脈沖控制方法[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)B卷[C];2011年
8 袁沈堅(jiān);顧幸生;;基于差分進(jìn)化的膜計(jì)算優(yōu)化算法[A];上海市化學(xué)化工學(xué)會(huì)2010年度學(xué)術(shù)年會(huì)論文集(自動(dòng)化專題)[C];2010年
9 姜立強(qiáng);郭錚;劉光斌;;差分進(jìn)化算法縮放因子取值策略研究[A];2007'儀表,,自動(dòng)化及先進(jìn)集成技術(shù)大會(huì)論文集(二)[C];2007年
10 倪惠康;杜文莉;錢鋒;;基于改進(jìn)差分進(jìn)化算法的PID參數(shù)優(yōu)[A];2009年中國(guó)智能自動(dòng)化會(huì)議論文集(第一分冊(cè))[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 孫浩;差分進(jìn)化多目標(biāo)優(yōu)化算法及其在鋁熱連軋軋制規(guī)程中應(yīng)用[D];燕山大學(xué);2015年
2 陳盈果;面向任務(wù)的快速響應(yīng)空間衛(wèi)星部署優(yōu)化設(shè)計(jì)方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2014年
3 謝宇;差分進(jìn)化的若干問題及其應(yīng)用研究[D];南京理工大學(xué);2015年
4 丁青鋒;基于元胞自動(dòng)機(jī)的差分進(jìn)化算法及其在通信系統(tǒng)中的應(yīng)用研究[D];上海大學(xué);2015年
5 賈東立;改進(jìn)的差分進(jìn)化算法及其在通信信號(hào)處理中的應(yīng)用研究[D];上海大學(xué);2011年
6 劉榮輝;多階段自適應(yīng)差分進(jìn)化算法及應(yīng)用研究[D];東華大學(xué);2012年
7 郭鵬;差分進(jìn)化算法改進(jìn)研究[D];天津大學(xué);2012年
8 王旭;改進(jìn)差分進(jìn)化算法及其在可逆邏輯綜合中的應(yīng)用[D];東華大學(xué);2013年
9 董明剛;基于差分進(jìn)化的優(yōu)化算法及應(yīng)用研究[D];浙江大學(xué);2012年
10 王天意;大地電磁迭代有限元與改進(jìn)差分進(jìn)化正反演算法研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
相關(guān)碩士學(xué)位論文 前10條
1 高靜;量子差分進(jìn)化算法在油田開發(fā)中的應(yīng)用研究[D];浙江大學(xué);2015年
2 萬婧;基于離散微粒群算法和混合差分進(jìn)化算法的復(fù)雜生產(chǎn)調(diào)度問題求解[D];昆明理工大學(xué);2015年
3 張轉(zhuǎn);基于差分進(jìn)化算法的混凝土德拜模型的研究[D];長(zhǎng)安大學(xué);2015年
4 江華;差分進(jìn)化算法的改進(jìn)及其在K-means聚類算法中的應(yīng)用[D];華中師范大學(xué);2015年
5 周志剛;基于差分進(jìn)化算法的信用風(fēng)險(xiǎn)度量模型研究[D];華中師范大學(xué);2015年
6 任甜甜;差分進(jìn)化算法在反演問題中的研究與應(yīng)用[D];新疆大學(xué);2015年
7 楊洋;基于差分進(jìn)化的模糊C-均值聚類算法研究[D];電子科技大學(xué);2015年
8 王丹;基于輔助函數(shù)的自適應(yīng)差分進(jìn)化算法研究[D];西安電子科技大學(xué);2014年
9 劉家華;基于進(jìn)化計(jì)算的軋制生產(chǎn)過程操作優(yōu)化算法與系統(tǒng)開發(fā)[D];東北大學(xué);2013年
10 王旦平;圓形對(duì)稱振子陣列天線基于差分進(jìn)化算法的綜合[D];西安電子科技大學(xué);2014年
本文編號(hào):1685785
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1685785.html