室內(nèi)全向移動機器人系統(tǒng)設(shè)計及導(dǎo)航方法研究
本文選題:全方位移動機器人 切入點:語義拓?fù)涞貓D 出處:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:21世紀(jì)以來,中國逐漸步入老齡化社會,出現(xiàn)“空巢老人”、老人無人陪護(hù)等社會問題。為家庭服務(wù)機器人行業(yè)提出巨大的市場需求,與此同時也對機器人提出了巨大的挑戰(zhàn)。室內(nèi)環(huán)境移動作業(yè)一直以來都是移動機器人研究的重點問題。由于機器人對于環(huán)境的理解局限于數(shù)字坐標(biāo)信息,而人對于環(huán)境的理解處于語義區(qū)域?qū)用?因此語義地圖構(gòu)建及語義導(dǎo)航成為移動機器人領(lǐng)域的研究熱點。室內(nèi)環(huán)境屬于動態(tài)環(huán)境,因此動態(tài)環(huán)境導(dǎo)航也是一直以來研究的焦點。首先,設(shè)計基于Mecanum輪的全方位移動機器人系統(tǒng)。針對室內(nèi)環(huán)境狹窄通過性差的特點,設(shè)計基于Mecanum輪的機器人構(gòu)型,其中獨立懸掛結(jié)構(gòu)可增強機器人不平路面通過性及避免打滑;設(shè)計具有良好可替換性的伺服驅(qū)動模塊,為機器人運動提供動力;通過激光和視覺傳感器,建立立體的環(huán)境感知模型;軟件系統(tǒng)基于ROS操作系統(tǒng),可實現(xiàn)節(jié)點的弱耦合、多線程運行,提高程序運行效率。然后,建立機器人系統(tǒng)模型及環(huán)境地圖模型。針對本文全方位移動機器人構(gòu)型開展機器人運動控制以及位姿估計工作,分別建立運動控制模型和里程計模型;針對本文的主要傳感器激光傳感器進(jìn)行建模修正及坐標(biāo)系變換;面向語義導(dǎo)航需求,分別構(gòu)建語義拓?fù)鋵拥貓D和2D柵格層地圖。其次,研究了機器人定位及語義導(dǎo)航問題。針對機器人定位,采用語義約束對AMCL定位算法的粒子分布進(jìn)行指導(dǎo),以此來加快機器人定位收斂速度,并減少誤匹配現(xiàn)象;語義拓?fù)鋵勇窂揭?guī)劃采用基于連通區(qū)域的搜索方法,可以加快搜索的速度,并且增強機器人的狹窄環(huán)境通過性;基于行人預(yù)測模型,采用基于A*的二次規(guī)劃方法進(jìn)行動態(tài)環(huán)境機器人局部路徑規(guī)劃。最后,搭建基于Mecanum輪全方位移動機器人實驗平臺,分別就機器人工作穩(wěn)定性、機器人室內(nèi)環(huán)境定位、機器人語義導(dǎo)航和動態(tài)環(huán)境導(dǎo)航開展實驗研究,驗證實驗平臺的工作可靠性和上述算法的可行性。
[Abstract]:Since the 21st century, China has gradually stepped into an aging society, with social problems such as "empty nest old people" and the elderly being left unattended. It has put forward a huge market demand for the family service robot industry. At the same time, it also poses a great challenge to the robot. Indoor environment mobile operation has always been the focus of mobile robot research. Because the robot's understanding of the environment is limited to the digital coordinate information, Human understanding of the environment is at the level of semantic region, so semantic map construction and semantic navigation become the research hotspot in the field of mobile robot. Indoor environment belongs to dynamic environment. Therefore, dynamic environment navigation has always been the focus of research. Firstly, an omni-directional mobile robot system based on Mecanum wheel is designed. Aiming at the characteristics of narrow indoor environment, the robot configuration based on Mecanum wheel is designed. Among them, independent suspension structure can enhance the mobility of robot uneven road surface and avoid skid; design servo drive module with good substitutability to provide power for robot motion; through laser and vision sensor, The software system is based on ROS operating system, which can realize the weak coupling of nodes, multi-thread running, and improve the efficiency of the program. The robot system model and the environment map model are established. The motion control model and the odometer model are established respectively for the robot motion control and pose estimation for the omnidirectional mobile robot configuration in this paper. For the main sensor laser sensor modeling correction and coordinate system transformation, the semantic topology layer map and 2D grid layer map are constructed to meet the needs of semantic navigation. Secondly, The problem of robot localization and semantic navigation is studied. The particle distribution of AMCL localization algorithm is guided by semantic constraints in order to accelerate the convergence speed of robot localization and reduce the mismatch phenomenon. The path planning of semantic topology layer adopts the search method based on connected region, which can accelerate the speed of searching and enhance the passability of the narrow environment of robot, and based on the pedestrian prediction model, the path planning of semantic topology layer can improve the speed of searching. The local path planning of dynamic environment robot is carried out by using the quadratic planning method based on A *. Finally, the experimental platform of omnidirectional mobile robot based on Mecanum wheel is built to locate the stability of the robot and the indoor environment of the robot, respectively. The experimental research on robot semantic navigation and dynamic environment navigation is carried out to verify the reliability of the experimental platform and the feasibility of the above algorithms.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃立新;耿以才;;基于動態(tài)人工勢場法移動機器人路徑規(guī)劃研究[J];計算機測量與控制;2017年02期
2 吳兆勇;杜正春;;基于誤差橢球的激光測量系統(tǒng)的不確定度分析[J];激光技術(shù);2017年01期
3 李新德;張秀龍;;一種面向室內(nèi)智能機器人導(dǎo)航的路徑自然語言處理方法[J];自動化學(xué)報;2014年02期
4 王田苗;陶永;陳陽;;服務(wù)機器人技術(shù)研究現(xiàn)狀與發(fā)展趨勢[J];中國科學(xué):信息科學(xué);2012年09期
5 錢夔;宋愛國;章華濤;熊鵬文;;基于自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)的機器人路徑規(guī)劃方法[J];東南大學(xué)學(xué)報(自然科學(xué)版);2012年04期
6 蘇松志;李紹滋;陳淑媛;蔡國榕;吳云東;;行人檢測技術(shù)綜述[J];電子學(xué)報;2012年04期
7 錢X;馬旭東;戴先中;;基于概念地圖的機器人導(dǎo)航方法[J];東南大學(xué)學(xué)報(自然科學(xué)版);2010年S1期
8 吳皓;田國會;陳西博;張濤濤;周風(fēng)余;;基于機器人服務(wù)任務(wù)導(dǎo)向的室內(nèi)未知環(huán)境地圖構(gòu)建[J];機器人;2010年02期
9 任孝平;蔡自興;;基于阿克曼原理的車式移動機器人運動學(xué)建模[J];智能系統(tǒng)學(xué)報;2009年06期
10 羅磊;田增山;陳俊亞;;EKF定位跟蹤算法研究[J];重慶郵電大學(xué)學(xué)報(自然科學(xué)版);2009年01期
相關(guān)博士學(xué)位論文 前2條
1 王建彬;四輪全向移動機器人的運動控制與運動規(guī)劃研究[D];廣東工業(yè)大學(xué);2014年
2 陳鳳東;基于認(rèn)知地圖的移動機器人自主導(dǎo)航技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前4條
1 趙程;基于視覺—語音交互式室內(nèi)層次地圖構(gòu)建與導(dǎo)航系統(tǒng)[D];廈門大學(xué);2014年
2 李文嫻;機器人關(guān)節(jié)力矩伺服電機四象限驅(qū)動系統(tǒng)設(shè)計與實現(xiàn)[D];山東大學(xué);2013年
3 王廣奇;基于RFID和激光傳感器的語義地圖更新及機器人定位方法研究[D];山東大學(xué);2013年
4 殷文春;直流伺服系統(tǒng)的PWM功率放大器應(yīng)用研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機械與物理研究所);2004年
,本文編號:1681071
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1681071.html