天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

多智能體避障路徑規(guī)劃研究

發(fā)布時間:2018-03-27 16:59

  本文選題:多智能體 切入點:不規(guī)則 出處:《南京信息工程大學(xué)》2017年碩士論文


【摘要】:隨著社會的不斷進步,科技的飛速發(fā)展,人工智能的重要性逐漸在科學(xué)研究與工程應(yīng)用中體現(xiàn)。其中的多智能體技術(shù)更是獨樹一幟,理論和實踐都自成一個體系。同時,智能體的智能性、環(huán)境的復(fù)雜性和多樣性,為多智能體相關(guān)的系統(tǒng)進行避障路徑規(guī)劃的研究提供了新的挑戰(zhàn),亦為熱門突破和創(chuàng)新點之一。如今,對于障礙物的研究已不僅僅只停留于有規(guī)律可循的規(guī)則形狀,運動狀態(tài)也從靜態(tài)過渡到了動態(tài)。為解決普遍適應(yīng)規(guī)則的制定這一難題,論文假定利用現(xiàn)代通信技術(shù)可以鎖定跟蹤目標,從路徑規(guī)劃角度出發(fā),針對不規(guī)則障礙物,就如何實現(xiàn)多智能體避障路徑規(guī)劃展開了研究,內(nèi)容主要包括:1、單個靜態(tài)不規(guī)則障礙物避障路徑規(guī)劃。傳統(tǒng)的多智能體避障算法在考慮障礙物形狀時,存在路徑冗余、能耗高等現(xiàn)象,不具普適性。為此,給出一種不規(guī)則障礙物避障路徑規(guī)劃的算法,定義了自動識別凸形化的方法,并在融入子登陸點法完成避障的同時,實現(xiàn)邊界最短路徑規(guī)劃,提高了障礙物處理的適用性和避障路徑規(guī)劃的智能性。2、多個靜態(tài)不規(guī)則障礙物?紤]到現(xiàn)實環(huán)境中障礙物的多樣性,利用自動識別凸形化規(guī)則對多個不規(guī)則障礙物環(huán)境進行了數(shù)據(jù)的集中處理,并改進子登陸點的概念,同時增加了輔助尋跡線作出瞬時路徑規(guī)劃,最后為避免“摩擦”碰撞現(xiàn)象的產(chǎn)生,增加了安全閾值、轉(zhuǎn)角速度及最小運動速度等參數(shù)的定義,選擇以避障為優(yōu)先完成目標追蹤的路徑規(guī)劃。3、單個勻速直線運動的不規(guī)則障礙物。為實現(xiàn)動態(tài)的不規(guī)則障礙物避障算法的嘗試,將使用自動識別凸形化規(guī)則之后的障礙物采用組合運動的方式實現(xiàn)勻速直線運動;同時,加入碰撞預(yù)測和邊緣運動策略,從而保證避障的優(yōu)先性,并重新進行路徑的規(guī)劃,體現(xiàn)了環(huán)境的動態(tài)性和規(guī)劃的智能性。4、實地測試。為實現(xiàn)算法的理論仿真與實際運動路徑的比較,進行了智能車的實地測試,通過兩者之間的比較,驗證了算法的可行性和有效性。
[Abstract]:With the continuous progress of society and the rapid development of science and technology, the importance of artificial intelligence is gradually reflected in scientific research and engineering applications. The intelligence of the agent, the complexity and diversity of the environment provide a new challenge for the research of obstacle avoidance path planning in multi-agent related systems, and also one of the hot breakthroughs and innovations. In order to solve the problem of making rules of universal adaptation, the study of obstacles has not only been in the regular shape, but also in the state of motion from static to dynamic. Based on the assumption that the tracking target can be locked by using modern communication technology, this paper studies how to realize obstacle avoidance path planning of multi-agent from the point of view of path planning and irregular obstacles. The main contents include: 1, single static irregular obstacle avoidance path planning. The traditional multi-agent obstacle avoidance algorithm has the phenomenon of path redundancy and high energy consumption when considering the shape of obstacle. In this paper, an algorithm of obstacle avoidance path planning for irregular obstacles is presented, and the method of automatically recognizing convexity is defined, and the shortest path planning of boundary is realized by incorporating the sub-landing point method to avoid obstacles. The applicability of obstacle processing and the intelligence of obstacle avoidance path planning are improved. 2. Multiple static irregular obstacles. Considering the diversity of obstacles in real environment, In this paper, the data of several irregular obstacle environments are processed by using the automatic recognition convexation rule, and the concept of sub-landing point is improved, and the instantaneous path planning of auxiliary tracing line is added. Finally, in order to avoid the phenomenon of "friction" collision, the definitions of safety threshold, angular velocity and minimum velocity are added. The path planning. 3, which takes obstacle avoidance as the priority to complete target tracking, is chosen, and a single irregular obstacle with uniform velocity linear motion is chosen. In order to realize the algorithm of obstacle avoidance of dynamic irregular obstacle, The obstacles after automatic recognition of convex rules will be combined to realize uniform linear motion. At the same time, collision prediction and edge motion strategies will be added to ensure the priority of obstacle avoidance, and path planning will be carried out again. It reflects the dynamic nature of the environment and the intelligence of planning. 4, field testing. In order to realize the comparison between the theoretical simulation of the algorithm and the actual movement path, the field test of the intelligent vehicle is carried out, and through the comparison between the two, The feasibility and effectiveness of the algorithm are verified.
【學(xué)位授予單位】:南京信息工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP18

【參考文獻】

相關(guān)期刊論文 前10條

1 劉硯菊;代濤;宋建輝;;改進人工勢場法的路徑規(guī)劃算法研究[J];沈陽理工大學(xué)學(xué)報;2017年01期

2 賈麗;孫騫;辛麗;錢廣秀;高寒旭;賈剛;趙增順;;無線傳感器網(wǎng)絡(luò)定位技術(shù)及典型系統(tǒng)[J];信息技術(shù);2017年01期

3 鄧志;黎海超;;移動機器人的自動導(dǎo)航技術(shù)的研究綜述[J];科技資訊;2016年33期

4 徐飛;;基于改進人工勢場法的機器人避障及路徑規(guī)劃研究[J];計算機科學(xué);2016年12期

5 朱曼曼;杜煜;張永華;宋曉帥;李強;;基于模糊邏輯的智能車局部路徑規(guī)劃[J];北京聯(lián)合大學(xué)學(xué)報;2016年04期

6 葉春;張蓉;;基于人工智能算法的仿生機器人行動的設(shè)計[J];信息與電腦(理論版);2016年19期

7 劉康;段瀅瀅;張恒才;;基于路網(wǎng)拓撲層次性表達的駕車路徑規(guī)劃方法[J];地球信息科學(xué)學(xué)報;2015年09期

8 徐騰飛;羅琦;王海;;基于向量場的移動機器人動態(tài)路徑規(guī)劃[J];計算機科學(xué);2015年05期

9 王振華;章衛(wèi)國;劉小雄;李廣文;;基于柵格空間V圖的無人機路徑規(guī)劃[J];計算機測量與控制;2009年06期

10 吳沉寒;羅玉臣;陳煒;;改進蟻群自適應(yīng)多級柵格路徑優(yōu)化策略[J];計算機工程;2009年09期

相關(guān)碩士學(xué)位論文 前5條

1 張霖;具有獨立的位移和速度拓撲結(jié)構(gòu)的多智能體系統(tǒng)一致性研究[D];西安電子科技大學(xué);2014年

2 白明明;多智能體系統(tǒng)建模、仿真及工程應(yīng)用研究[D];西安電子科技大學(xué);2012年

3 王近佳;基于多Agent的城市交通協(xié)調(diào)控制的研究[D];南京信息工程大學(xué);2011年

4 周良;不規(guī)則障礙物環(huán)境下移動機器人路徑規(guī)劃研究[D];湖南大學(xué);2011年

5 包衛(wèi)衛(wèi);多關(guān)節(jié)檢修機械臂避障路徑規(guī)劃研究[D];哈爾濱工程大學(xué);2009年

,

本文編號:1672407

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1672407.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶96b01***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com