基于雙時(shí)間尺度卷積神經(jīng)網(wǎng)絡(luò)的微表情識(shí)別
發(fā)布時(shí)間:2018-03-24 22:23
本文選題:自發(fā)微表情 切入點(diǎn):雙時(shí)間尺度 出處:《西南大學(xué)》2017年碩士論文
【摘要】:人類面部表情在人們的日常生活、交流中扮演著十分重要的角色。通常,我們所指的人類面部表情被稱之為“宏表情”,其持續(xù)時(shí)間一般在0.5s~4s之間,容易被人察覺和辨別。然而,有心理學(xué)研究表明,“宏表情”在表達(dá)人類真實(shí)情感上具有一定的掩飾性,即面部“宏表情”能夠掩飾真實(shí)情感的流露,而與“宏表情”相對(duì)的“微表情”,由于其能夠表達(dá)人類試圖壓抑的情感,近年來受到了人們的廣泛關(guān)注。微表情是一種不受人控制的、簡(jiǎn)短的面部表情,它能夠反映人試圖掩飾的情感以及人未意識(shí)到的情感體驗(yàn),因此通過“微表情”來識(shí)別人類的情感顯得更加真實(shí)、可靠。遺憾的是,由于“微表情”具有持續(xù)時(shí)間短(1/25s~1/5s),活動(dòng)幅度、區(qū)域小等特點(diǎn),不僅人難以識(shí)別,并且在利用模式識(shí)別等方法對(duì)微表情視頻片段進(jìn)行分類識(shí)別時(shí),很難有效的表征不同微表情所具有的特征信息;除此之外,由于自發(fā)微表情數(shù)據(jù)庫(kù)難以采集,數(shù)據(jù)量缺乏等要因素,使得訓(xùn)練一個(gè)有效的微表情識(shí)別算法也變得十分艱難。針對(duì)以上問題,本文提出了一種利用雙時(shí)間尺度卷積神經(jīng)網(wǎng)絡(luò)(DTSCNN)對(duì)微表情進(jìn)行識(shí)別的方法。該方法首先對(duì)微表情數(shù)據(jù)集(CASMEI、CASMEII)進(jìn)行擴(kuò)充處理,以此降低網(wǎng)絡(luò)訓(xùn)練過程中過擬合的風(fēng)險(xiǎn),然后利用雙通道卷積神經(jīng)網(wǎng)絡(luò)分別對(duì)微表情視頻序列在64fps和128fps兩個(gè)時(shí)間尺度進(jìn)行特征提取,最后對(duì)所提取的特征采用SVM進(jìn)行決策級(jí)融合分類。DTSCNN不僅解決了由于微表情數(shù)據(jù)庫(kù)樣本少、難以訓(xùn)練的問題,而且在CASMEI、CASMEII數(shù)據(jù)庫(kù)上驗(yàn)證的結(jié)果顯示其識(shí)別率(66.67%)比最新的、傳統(tǒng)的微表情識(shí)別算法(MDMO:55.45%、FDM:56.97%、STCLQP:56.36%)的識(shí)別率提高了10%以上。
[Abstract]:Human facial expressions play a very important role in people's daily life and communication. Usually, we refer to human facial expressions as "macro expressions". The duration of facial expressions is generally between 0.5s~4s, which is easy to be detected and distinguished. However, Psychological studies have shown that "macro expression" has a certain concealment in expressing human true emotion, that is, facial "macro expression" can conceal the expression of real emotion. "microexpressions", as opposed to "macro expressions", have attracted widespread attention in recent years for their ability to express feelings that humans are trying to suppress. Microexpressions are an uncontrolled, brief facial expression. It reflects the emotions that people try to hide and the emotional experiences they don't realize, so it's more real and reliable to identify human emotions through "microexpressions." unfortunately, Because the "microfacial expression" has the characteristics of short duration of 1 / 25 / 1 / 5 / 5 s-1, range of activity, small area, etc., it is not only difficult for people to recognize, but also in the process of classifying and recognizing microfacial video fragments by using pattern recognition and other methods. It is difficult to effectively represent the characteristic information of different microexpressions. In addition, because the spontaneous microfacial expression database is difficult to collect, the amount of data is scarce and so on. It makes it very difficult to train an effective micro-expression recognition algorithm. In this paper, a method of recognition of microfacial expression by using dual time scale convolution neural network (DTSCNN) is presented. The method firstly expands the data set of microfacial expression (CASMEI / CASMEII) to reduce the risk of over-fitting in the course of network training. Secondly, two-channel convolution neural network is used to extract the features of microfacial video sequences at 64fps and 128fps time scales, respectively. Finally, SVM is used to classify the extracted features in decision level fusion classification. DTSCNN not only solves the problem that it is difficult to be trained because of the small number of samples in the microfacial expression database, but also shows that the recognition rate is 66.67% higher than that of the latest one, which is verified on CASMEI / CASMEII database. The recognition rate of the traditional microfacial expression recognition algorithm, MDMO: 55.45 / FDM: 56.97 / STCLQP: 56.36, has increased by more than 10%.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 張軒閣;田彥濤;郭艷君;王美茜;;基于光流與LBP-TOP特征結(jié)合的微表情識(shí)別[J];吉林大學(xué)學(xué)報(bào)(信息科學(xué)版);2015年05期
,本文編號(hào):1660284
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1660284.html
最近更新
教材專著