履帶機(jī)器人動(dòng)力學(xué)特性研究
本文選題:行走機(jī)器人 切入點(diǎn):絲桿 出處:《上海海洋大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:近代以來,由于科技水平的快速發(fā)展,各種新興機(jī)器人不斷涌現(xiàn),從單一到復(fù)雜,從一體化到多模塊合成,從單任務(wù)到多任務(wù),其應(yīng)用已滲透到國民制造的各行各業(yè),如軍事、環(huán)境監(jiān)測(cè)、船舶制造、能源勘探與開采、醫(yī)療、農(nóng)業(yè)、林業(yè)、服務(wù)業(yè)等工況比較惡劣的環(huán)境,并在其中扮演著至關(guān)重要的角色[47]。同時(shí)隨著國民經(jīng)濟(jì)的快速發(fā)展,不可避免的造成環(huán)境等附帶因素的惡化,因此履帶機(jī)器人的工作環(huán)境在可預(yù)見時(shí)間內(nèi)比較嚴(yán)峻,這就要求履帶機(jī)器人具有良好的動(dòng)力學(xué)性能。本文在此方向下,以履帶移動(dòng)機(jī)器人為研究對(duì)象,充分了解國內(nèi)外該型機(jī)器人的技術(shù)狀況,并結(jié)合履帶機(jī)器人的各種工作環(huán)境,提出一種利用絲杠實(shí)現(xiàn)變節(jié)的三節(jié)六履式移動(dòng)機(jī)器人設(shè)計(jì)方案,并介紹其整體結(jié)構(gòu),研究其運(yùn)動(dòng)學(xué)性能,利用多體動(dòng)力學(xué)軟件RecurDyn構(gòu)建虛擬樣機(jī)模型分析其動(dòng)力學(xué)性能,并在此基礎(chǔ)上完成樣機(jī)模型的制作,最后通過相關(guān)試驗(yàn)說明方案的可執(zhí)行性,具體工作如下:(1)提出履帶機(jī)器人的具體結(jié)構(gòu)方案,闡述其具體機(jī)械結(jié)構(gòu)以及工作原理,給出其具體設(shè)計(jì)參數(shù),并分析重要部件間的關(guān)系,如擺臂仰角與滑塊移動(dòng)距離間的關(guān)系等。(2)依據(jù)機(jī)器人結(jié)構(gòu)設(shè)計(jì)方案,結(jié)合機(jī)器人學(xué)知識(shí)構(gòu)建機(jī)器人運(yùn)動(dòng)學(xué)模型,闡述機(jī)器人越障原理,分析其在不同運(yùn)動(dòng)狀態(tài)下運(yùn)動(dòng)學(xué)性能,如機(jī)器人抗傾覆性能,機(jī)器人跨越凸臺(tái)、樓梯、壕溝、斜坡以及轉(zhuǎn)彎等性能。(3)依據(jù)上述理論分析,建立動(dòng)力學(xué)模型,并結(jié)合三維模型軟件和動(dòng)力學(xué)分析軟件建立虛擬樣機(jī)模型,并就上述性能在RecurDyn中進(jìn)行動(dòng)力學(xué)性能的仿真試驗(yàn),驗(yàn)證設(shè)計(jì)參數(shù)的有效性與正確性,并為樣機(jī)的關(guān)鍵部件選擇提供重要參考,為后續(xù)樣機(jī)的制造奠定牢固的基礎(chǔ)。(4)完成試驗(yàn)樣機(jī)的制造,并在此基礎(chǔ)上完成簡易控制系統(tǒng)設(shè)計(jì),進(jìn)行試驗(yàn)。結(jié)果表明機(jī)器人各項(xiàng)運(yùn)動(dòng)性能基本符合最初設(shè)計(jì)意圖,具備不錯(cuò)的運(yùn)動(dòng)學(xué)與動(dòng)力學(xué)性能,為履帶移動(dòng)機(jī)器人的后續(xù)改進(jìn)與完善提供初始參考。
[Abstract]:Since modern times, due to the rapid development of science and technology, a variety of emerging robots have been emerging, from single to complex, from integration to multi-module synthesis, from single-task to multi-task, its application has penetrated into various industries, such as military, which are manufactured by the people. Environmental monitoring, shipbuilding, energy exploration and exploitation, medical treatment, agriculture, forestry, service and other working conditions are relatively harsh conditions, and play a vital role in them [47]. At the same time, with the rapid development of the national economy, Due to the deterioration of environment and other incidental factors, the working environment of crawler robot is severe in the foreseeable time, which requires the crawler robot to have good dynamic performance. Taking crawler mobile robot as the research object, fully understanding the technical situation of this type of robot at home and abroad, and combining with the various working environments of the crawler robot, a design scheme of three-section six-shoe mobile robot with three sections and six shoes using the lead screw to realize the change is put forward. The whole structure of the model is introduced and its kinematics performance is studied. The virtual prototype model is constructed by using multi-body dynamics software RecurDyn to analyze its dynamic performance, and the prototype model is made on this basis. Finally, the implementability of the scheme is illustrated by relevant experiments. The specific work is as follows: (1) the concrete structure scheme of the crawler robot is put forward, and the concrete mechanical structure and working principle of the crawler robot are expounded, and the specific design parameters are given. The relationship between important components, such as the relationship between the swing arm elevation angle and the moving distance of the slider, is analyzed. According to the design scheme of the robot structure and the knowledge of robotics, the kinematics model of the robot is constructed, and the principle of the robot surmounting obstacles is expounded. The kinematics performance of the robot in different motion states, such as the anti-overturning performance of the robot, the performance of the robot over the convex platform, the staircase, the trench, the slope and the turn, etc., are analyzed. Based on the above theoretical analysis, the dynamic model is established. The virtual prototyping model is built with 3D model software and dynamic analysis software, and the simulation test of the dynamic performance is carried out in RecurDyn to verify the validity and correctness of the design parameters. It also provides an important reference for the selection of the key parts of the prototype, and lays a solid foundation for the subsequent prototype manufacture. It also completes the manufacture of the test prototype, and on this basis completes the design of the simple control system. The results show that the motion performance of the robot basically accords with the original design intention, and has good kinematics and dynamics performance, which provides the initial reference for the further improvement and perfection of tracked mobile robot.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳子岳;高亞東;王董測(cè);楊帥;;基于RecurDyn的履帶移動(dòng)機(jī)器人統(tǒng)一動(dòng)力學(xué)仿真分析[J];機(jī)械設(shè)計(jì)與研究;2016年05期
2 吳子岳;高亞東;王董測(cè);楊帥;;基于北斗系統(tǒng)的履帶移動(dòng)機(jī)器人定位設(shè)計(jì)與實(shí)現(xiàn)[J];全球定位系統(tǒng);2016年05期
3 秦偉;陳曦;張飲深;;機(jī)器人領(lǐng)跑“十三五”[J];裝備制造;2016年06期
4 向長秋;胡湘娟;陽泳;;基于STC89C52單片機(jī)的電子密碼鎖設(shè)計(jì)[J];數(shù)字技術(shù)與應(yīng)用;2015年10期
5 賈常艷;;制造業(yè)強(qiáng)國家才能強(qiáng)——專訪中國工程院制造強(qiáng)國戰(zhàn)略研究總體組成員 屈賢明[J];電器工業(yè);2015年03期
6 孫智勇;左方印;朱洪俊;冷鴻彬;;雙曲柄滑塊機(jī)構(gòu)變形履帶機(jī)器人越障機(jī)構(gòu)設(shè)計(jì)和分析[J];機(jī)械傳動(dòng);2014年06期
7 冷鴻彬;朱洪俊;周俊;孫智勇;修星晨;;懸架式六桿機(jī)構(gòu)機(jī)器人機(jī)構(gòu)設(shè)計(jì)與分析[J];機(jī)床與液壓;2014年09期
8 陳安成;穆希輝;杜峰坡;郭浩亮;;基于RecurDyn的小型履帶車的建模與仿真[J];機(jī)械設(shè)計(jì);2013年10期
9 張京;趙瀟君;丁虹民;;淺談智能移動(dòng)機(jī)器人[J];科協(xié)論壇(下半月);2012年07期
10 徐如強(qiáng);韓寶玲;羅慶生;何灝;;六履帶機(jī)器人結(jié)構(gòu)參數(shù)與越障性能的關(guān)系[J];機(jī)械設(shè)計(jì)與制造;2012年07期
相關(guān)博士學(xué)位論文 前2條
1 項(xiàng)宏偉;便攜式可變形履帶式機(jī)器人的機(jī)構(gòu)設(shè)計(jì)與運(yùn)動(dòng)研究[D];沈陽工業(yè)大學(xué);2015年
2 李允旺;礦井救災(zāi)機(jī)器人行走機(jī)構(gòu)研究[D];中國礦業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 陳艷麗;基于北斗定位的農(nóng)機(jī)車載組合導(dǎo)航系統(tǒng)研究[D];江蘇大學(xué);2016年
2 王洪濤;履帶車輛差速轉(zhuǎn)向載荷比受軟土地面條件影響的實(shí)驗(yàn)研究[D];東北農(nóng)業(yè)大學(xué);2014年
3 楊孔碩;變形履帶機(jī)器人的運(yùn)動(dòng)特性分析[D];沈陽航空航天大學(xué);2014年
4 張凡;履帶式移動(dòng)機(jī)器人的控制與避障[D];南京理工大學(xué);2013年
5 陳賽;基于單片機(jī)的GPS船舶航跡儀的研制[D];河南科技大學(xué);2012年
6 宋子鳴;一類移動(dòng)機(jī)器人的視覺感知與控制技術(shù)研究[D];南京理工大學(xué);2012年
7 黑沫;可變形履帶機(jī)器人設(shè)計(jì)與運(yùn)動(dòng)分析[D];國防科學(xué)技術(shù)大學(xué);2010年
8 趙希慶;四連桿變形履帶式機(jī)器人的設(shè)計(jì)與研究[D];國防科學(xué)技術(shù)大學(xué);2009年
9 楊林;地面移動(dòng)機(jī)器人載體及搭載平臺(tái)機(jī)械設(shè)計(jì)與分析[D];南京理工大學(xué);2009年
10 陳淑艷;移動(dòng)機(jī)器人履帶行走裝置的構(gòu)型與機(jī)動(dòng)性能研究[D];揚(yáng)州大學(xué);2008年
,本文編號(hào):1638887
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1638887.html