天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動(dòng)化論文 >

基于機(jī)器學(xué)習(xí)的TPTV用戶報(bào)障預(yù)測(cè)算法研究

發(fā)布時(shí)間:2018-03-19 17:20

  本文選題:IPTV 切入點(diǎn):機(jī)器學(xué)習(xí) 出處:《南京郵電大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:在中國,三網(wǎng)融合正大力推進(jìn),交互式網(wǎng)絡(luò)電視(Internet Protocol Television,IPTV)作為三網(wǎng)融合最合適的著力點(diǎn),有著十分巨大的潛力,因此對(duì)IPTV的研究也成為了當(dāng)下的熱點(diǎn)。然而,運(yùn)營商傳統(tǒng)的運(yùn)維方法主要是根據(jù)用戶的投訴來排除設(shè)備故障,這種方法時(shí)效性差,并且需要大量運(yùn)維人員,造成人員冗余,已經(jīng)跟不上時(shí)代的發(fā)展。為了保證用戶收看IPTV的體驗(yàn),IPTV業(yè)務(wù)迫切需要一種更合理,更有效的用戶報(bào)障預(yù)測(cè)算法作為代替。同時(shí),隨著各類計(jì)算機(jī)性能的迅速提高,機(jī)器學(xué)習(xí)與社會(huì)各個(gè)領(lǐng)域結(jié)合的也越發(fā)緊密。本論文從機(jī)器學(xué)習(xí)的角度出發(fā),主要研究了基于機(jī)器學(xué)習(xí)的IPTV故障預(yù)測(cè)中涉及的一些關(guān)鍵問題,主要的研究?jī)?nèi)容如下:(1)本論文提出了基于F-Score與互信息的Relief特征選擇算法。Relief特征選擇算法具有簡(jiǎn)單明了,運(yùn)算速度快等優(yōu)點(diǎn),并且選擇的特征子集具有相當(dāng)優(yōu)異的性能,然而它對(duì)冗余特征的選擇能力較弱。由于Fisher Score對(duì)特征的類別也具有很好的區(qū)分能力,本論文將Fisher Score加入Relief算法中,以此進(jìn)一步提高Relief算法的優(yōu)點(diǎn),同時(shí)為了減少冗余特征,本論文也將互信息與Relief相結(jié)合。在多個(gè)數(shù)據(jù)集上的實(shí)驗(yàn)表明基于F-Score與互信息的Relief特征選擇算法相比原算法的分類準(zhǔn)確率得到提高。(2)本論文提出了基于權(quán)重限制與F1值的AdaBoost算法。AdaBoost分類算法簡(jiǎn)單穩(wěn)定,而且不容易過擬合,針對(duì)AdaBoost算法在分類過程中容易對(duì)異常點(diǎn)賦予較大權(quán)重導(dǎo)致算法失衡和分類錯(cuò)誤率不適合用于非均衡數(shù)據(jù)集的缺陷,本論文對(duì)樣本的權(quán)值做出了限制,并且綜合考慮F1值和分類錯(cuò)誤率對(duì)樣本權(quán)值的影響,在AdaBoost算法的基礎(chǔ)上提出了基于權(quán)重限制與F1值的AdaBoost算法,實(shí)驗(yàn)表明該算法可以有效提高分類準(zhǔn)確率。(3)本論文將基于F-Score與互信息的Relief特征選擇算法與基于權(quán)重限制與F1值的Ada Boost算法應(yīng)用于IPTV用戶報(bào)障預(yù)測(cè)。本論文對(duì)IPTV的各種指標(biāo)數(shù)據(jù)進(jìn)行分析和預(yù)處理,然后使用基于F-Score和互信息的Relief算法和基于權(quán)重限制與F1值的AdaBoost算法對(duì)IPTV數(shù)據(jù)進(jìn)行用戶報(bào)障預(yù)測(cè),實(shí)驗(yàn)結(jié)果表明改進(jìn)后的算法與原算法相比的預(yù)測(cè)準(zhǔn)確率得到提高。
[Abstract]:In China, tri-network convergence is being vigorously promoted. As the most suitable point of three-network convergence, interactive network television (IPTV) has great potential. Therefore, the research on IPTV has become a hot spot. Operators' traditional operation and maintenance methods are mainly based on customer complaints to troubleshoot equipment, this method is inefficient, and requires a large number of operation and maintenance personnel, resulting in personnel redundancy, In order to ensure users watch the experience of IPTV service, we urgently need a more reasonable and effective algorithm to predict the obstacle of users as a substitute. At the same time, with the rapid improvement of the performance of all kinds of computers, The combination of machine learning and various fields of society is becoming more and more close. From the point of view of machine learning, this paper mainly studies some key problems involved in IPTV fault prediction based on machine learning. The main research contents are as follows: (1) in this paper, a feature selection algorithm for Relief based on F-Score and mutual information. Relief feature selection algorithm has the advantages of simplicity, fast operation and so on, and the selected feature subset has excellent performance. However, its ability to select redundant features is weak. Because Fisher Score also has a good ability to distinguish feature categories, this paper adds Fisher Score to Relief algorithm to further improve the advantages of Relief algorithm and reduce redundant features. This paper also combines mutual information with Relief. Experiments on multiple data sets show that the classification accuracy of Relief feature selection algorithm based on F-Score and mutual information is improved compared with the original algorithm. The AdaBoost algorithm of F1 value. AdaBoost classification algorithm is simple and stable. And it is not easy to fit. In order to solve the problem that AdaBoost algorithm is easy to give outliers a large weight in the process of classification, the algorithm is unbalanced and the classification error rate is not suitable for non-equilibrium data sets, so this paper limits the weight of samples. Considering the influence of F1 value and classification error rate on sample weight, a AdaBoost algorithm based on weight restriction and F1 value is proposed on the basis of AdaBoost algorithm. Experiments show that this algorithm can effectively improve the classification accuracy.) in this paper, the Relief feature selection algorithm based on F-Score and mutual information and the Ada Boost algorithm based on weight limit and F1 value are applied to IPTV user barrier prediction. Analysis and preprocessing of various indicator data, Then the Relief algorithm based on F-Score and mutual information and the AdaBoost algorithm based on weight limit and F1 value are used to predict the IPTV data. The experimental results show that the prediction accuracy of the improved algorithm is higher than that of the original algorithm.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN949.292;TP181

【參考文獻(xiàn)】

相關(guān)期刊論文 前1條

1 李良;邱曉彤;趙強(qiáng);馬紹良;;基于數(shù)據(jù)挖掘的IPTV QoE評(píng)價(jià)方法[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年11期

,

本文編號(hào):1635249

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1635249.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶82e3c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
99视频精品免费视频播放| 国产女优视频一区二区| 久久国产成人精品国产成人亚洲| 欧美亚洲91在线视频| 精品人妻少妇二区三区| 不卡中文字幕在线视频| 中字幕一区二区三区久久蜜桃| 99国产成人免费一区二区| 在线中文字幕亚洲欧美一区 | 久热在线视频这里只有精品| 日本精品免费在线观看| 国产精品一区二区不卡中文| 一区二区三区四区亚洲另类| 日本亚洲精品在线观看| 久久精品国产亚洲av麻豆尤物| 国产精品亚洲精品亚洲| 亚洲精品福利视频你懂的| 中文字幕人妻一区二区免费| 老司机精品一区二区三区| 国产亚洲精品久久99| 欧美日韩一区二区三区色拉拉| 色婷婷视频免费在线观看| 国产自拍欧美日韩在线观看| 精品精品国产自在久久高清| 国产精品久久精品国产| 日韩成人中文字幕在线一区| 欧美二区视频在线观看| 九九热精品视频在线观看| 日韩一级一片内射视频4k| 91天堂免费在线观看| 冬爱琴音一区二区中文字幕| 五月天丁香亚洲综合网| 九九九热视频最新在线| 日本人妻丰满熟妇久久| 嫩草国产福利视频一区二区| 青草草在线视频免费视频| 91麻豆精品欧美视频| 精品一区二区三区人妻视频| 激情爱爱一区二区三区| 亚洲专区一区中文字幕| 国产午夜福利在线免费观看|