基于BOTDR的分布式光纖應(yīng)變檢測(cè)系統(tǒng)
本文選題:應(yīng)變檢測(cè) 切入點(diǎn):BOTDR 出處:《太原理工大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著我國(guó)基礎(chǔ)建設(shè)規(guī)模的擴(kuò)大,隧道、橋梁、大壩等基礎(chǔ)設(shè)施數(shù)量不斷增大,其長(zhǎng)期運(yùn)行帶來(lái)的安全隱患問(wèn)題也不斷增加;同時(shí)由于環(huán)境破壞嚴(yán)重,諸如山體滑坡、地表塌陷等地質(zhì)災(zāi)害也時(shí)常發(fā)生。因此如何對(duì)大規(guī);A(chǔ)設(shè)施和特殊地貌區(qū)進(jìn)行結(jié)構(gòu)健康監(jiān)測(cè)和災(zāi)害預(yù)警具有重要意義。結(jié)構(gòu)健康監(jiān)測(cè)多數(shù)基于應(yīng)變檢測(cè)實(shí)現(xiàn),傳統(tǒng)的應(yīng)變檢測(cè)技術(shù)主要依靠應(yīng)變片或者振弦式應(yīng)變傳感器來(lái)實(shí)現(xiàn)點(diǎn)式測(cè)量,這兩者易受環(huán)境腐蝕,不宜長(zhǎng)期檢測(cè),同時(shí)在大規(guī)模測(cè)點(diǎn)容量的應(yīng)用場(chǎng)合中,點(diǎn)式傳感器布設(shè)冗雜、信號(hào)傳輸不便、抗電磁干擾差,給工程應(yīng)用帶來(lái)困難。相比于傳統(tǒng)應(yīng)變傳感器,分布式光纖應(yīng)變傳感器具有抗電磁干擾、集傳輸與傳感為一體、耐高溫、靈敏度高、體積小等優(yōu)點(diǎn),特別適合在易燃、易爆、受限空間及強(qiáng)電磁干擾等惡劣環(huán)境下使用。而基于BOTDR的分布式光纖傳感技術(shù)除以上優(yōu)點(diǎn)外,還有帶寬大、損耗低,傳感距離長(zhǎng)等特點(diǎn),可以很好完成健康檢測(cè)和預(yù)警任務(wù)。首先通過(guò)布里淵散射特性分析基于BOTDR的應(yīng)變傳感機(jī)理,得出布里淵頻移與應(yīng)變的線性關(guān)系,并理論分析相干檢測(cè)的機(jī)制,以結(jié)合微波掃頻技術(shù)給出應(yīng)變傳感系統(tǒng)的總體設(shè)計(jì)方案。隨后分析布里淵散射譜的特征,以此闡述洛侖茲曲線擬合算法(L-M算法)的流程和意義,并根據(jù)檢測(cè)方式和數(shù)據(jù)采集裝置的特點(diǎn)設(shè)計(jì)出基于LabVIEW的應(yīng)變解調(diào)軟件。其次,為便于樣機(jī)集成,根據(jù)實(shí)驗(yàn)室現(xiàn)有的AD9467模數(shù)轉(zhuǎn)換芯片和Kintex-7系列XC7K325T開(kāi)發(fā)板卡,基于Verilog語(yǔ)言設(shè)計(jì)出了AD采集和PCIe DMA高速數(shù)據(jù)傳輸軟件模塊,并完成每個(gè)程序功能的初步驗(yàn)證,為后期設(shè)計(jì)完整的高速采集卡奠定了基礎(chǔ)。最后根據(jù)總體設(shè)計(jì)方案,搭建出實(shí)驗(yàn)傳感系統(tǒng),進(jìn)行拉伸實(shí)驗(yàn),在10.19km的傳感光纖末端處3.9m長(zhǎng)度上施加0με-8000με的應(yīng)變,解調(diào)的頻移誤差為±1.05MHz,對(duì)應(yīng)應(yīng)變測(cè)量誤差為±24.35με,因此本分布式光纖應(yīng)變檢測(cè)系統(tǒng)可為工程設(shè)施、特殊地貌區(qū)的結(jié)構(gòu)健康監(jiān)測(cè)提供一種可行的檢測(cè)方案。
[Abstract]:With the expansion of our country's infrastructure, the number of tunnels, bridges, dams and other infrastructure facilities is increasing, and the hidden safety problems brought by its long-term operation are also increasing. At the same time, due to the serious environmental damage, such as landslides, Geological disasters such as surface collapse also occur frequently. Therefore, it is of great significance to monitor structural health and early warning of disasters in large-scale infrastructure and special geomorphological areas. Structural health monitoring is mostly based on strain detection. The traditional strain detection technology mainly relies on strain gauges or vibrating string strain sensors to realize point measurement. Both of them are vulnerable to environmental corrosion and are not suitable for long-term detection. At the same time, in the application of large scale measuring point capacity, The point sensor is jumbled, the signal transmission is inconvenient, and the electromagnetic interference is poor. Compared with the traditional strain sensor, the distributed fiber optic strain sensor has anti-electromagnetic interference, which integrates the transmission and sensing, and can withstand high temperature. High sensitivity, small size and so on, especially suitable for use in flammable, explosive, confined space and strong electromagnetic interference, etc. In addition to the above advantages, the distributed optical fiber sensing technology based on BOTDR also has large bandwidth and low loss. Because of the long sensing distance, the task of health detection and early warning can be accomplished well. Firstly, the strain sensing mechanism based on BOTDR is analyzed by Brillouin scattering characteristics, and the linear relationship between Brillouin frequency shift and strain is obtained. The mechanism of coherent detection is analyzed theoretically in order to give the overall design scheme of strain sensing system combined with microwave frequency scanning technology. Then, the characteristics of Brillouin scattering spectrum are analyzed, and the flow and significance of Lorentz curve fitting algorithm (L-M algorithm) are expounded. The strain demodulation software based on LabVIEW is designed according to the detection method and the characteristics of data acquisition device. Secondly, in order to facilitate the prototype integration, the board card is developed according to the existing AD9467 A / D conversion chip and Kintex-7 series XC7K325T in the laboratory. The software module of AD acquisition and PCIe DMA high-speed data transmission is designed based on Verilog language, and the initial verification of each program function is completed, which lays the foundation for the later design of complete high-speed data acquisition card. Finally, according to the overall design scheme, The strain of 0 渭 蔚 -8000 渭 蔚 was applied on the 3.9m length at the end of 10.19km sensing fiber. The frequency shift error of demodulation is 鹵1.05 MHz and the corresponding strain measurement error is 鹵24.35 渭 蔚. Therefore, this distributed optical fiber strain detection system can provide a feasible detection scheme for structural health monitoring in engineering facilities and special geomorphological areas.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP212;TP274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 易仁彥;周瑞峰;黃茜;;近15年國(guó)內(nèi)橋梁坍塌事故的原因和風(fēng)險(xiǎn)分析[J];交通科技;2015年05期
2 畢衛(wèi)紅;李敬陽(yáng);楊希鵬;付興虎;付廣偉;;微波電光調(diào)制BOTDR系統(tǒng)中參考光功率穩(wěn)定控制[J];光電工程;2015年05期
3 王麒;毛江鴻;陳佳蕓;許斌鋒;陸飛;俞凱奇;;基于BOTDA的鋼結(jié)構(gòu)全尺度應(yīng)變監(jiān)測(cè)方法及其試驗(yàn)研究[J];傳感技術(shù)學(xué)報(bào);2015年03期
4 張欣;姚森敬;陳泰;仝芳軒;;基于布里淵散射的分布式光纖技術(shù)的研究[J];光通信技術(shù);2015年01期
5 杜志泉;倪鋒;肖發(fā)新;;光纖傳感技術(shù)的發(fā)展與應(yīng)用[J];光電技術(shù)應(yīng)用;2014年06期
6 劉鐵根;王雙;江俊峰;劉琨;尹金德;;航空航天光纖傳感技術(shù)研究進(jìn)展[J];儀器儀表學(xué)報(bào);2014年08期
7 楊新華;王用璽;劉欣;;基于FPGA的以太網(wǎng)高速數(shù)據(jù)傳輸系統(tǒng)的設(shè)計(jì)[J];儀表技術(shù)與傳感器;2013年12期
8 張俊英;王翰鋒;張彬;李宏杰;陳清通;李文;;煤礦采空區(qū)勘查與安全隱患綜合治理技術(shù)[J];煤炭科學(xué)技術(shù);2013年10期
9 韓永溫;郝文杰;張林行;張曉飛;呂中虎;;基于拉曼散射原理的分布式光纖測(cè)溫系統(tǒng)研究[J];半導(dǎo)體光電;2013年02期
10 劉傳正;劉艷輝;;論地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境利用[J];吉林大學(xué)學(xué)報(bào)(地球科學(xué)版);2012年05期
相關(guān)博士學(xué)位論文 前2條
1 王如剛;光纖中布里淵散射的機(jī)理及其應(yīng)用研究[D];南京大學(xué);2012年
2 劉德華;超長(zhǎng)距離分布式光纖傳感技術(shù)及其工程應(yīng)用[D];浙江大學(xué);2005年
相關(guān)碩士學(xué)位論文 前1條
1 趙曉東;布里淵光時(shí)域反射光纖傳感技術(shù)若干問(wèn)題研究[D];南京大學(xué);2012年
,本文編號(hào):1564551
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1564551.html