機器人的端口受控哈密頓與自適應協(xié)調控制
本文關鍵詞: 永磁同步電機 自適應控制 端口受控哈密頓 干擾觀測器 出處:《青島大學》2017年碩士論文 論文類型:學位論文
【摘要】:隨著社會經(jīng)濟發(fā)展和機電、電力電子、人工智能等相關理論以及各種控制策略的日益完善,機器人技術已逐漸成熟,并在眾多領域取得較為廣泛的應用,發(fā)揮著不可或缺的作用。相應的,其控制系統(tǒng)的研究顯得日益重要。作為一個高階復雜系統(tǒng),機器人實際運行過程中不可避免地會受到內部不確定性參數(shù)和外部擾動等因素的影響。如何最大程度地減小這些因素對系統(tǒng)的影響與干擾,成為機器人控制策略的研究重點。傳統(tǒng)的機器人控制方案往往不考慮關節(jié)驅動電機,僅僅從其動力學角度出發(fā),建立其模型。在此基礎上進行控制器設計,雖然理論上可以取得較好的效果,但在實際運行中卻是差強人意,具有很大的局限性�;诖吮菊n題統(tǒng)籌機器人動力學與驅動電機,永磁同步電機(PMSM)作為機器人驅動電機,在修正模型的基礎上給出了控制器的設計過程與方法。第一,首先介紹了本課題的研究目的和意義,并簡單闡述了機器人控制的國內外研究現(xiàn)狀與趨勢。第二,統(tǒng)籌機器人動力學模型與關節(jié)驅動電機PMSM的數(shù)學模型,建立了新的機器人模型。第三,主要研究了機器人的端口受控哈密頓與自適應協(xié)調控制。分別設計求取了端口受控哈密頓控制器與自適應控制器,仿真結果表明,采用該方案后系統(tǒng)跟蹤信號的快速性良好,同時也具有較好的穩(wěn)態(tài)性能,初步證實了協(xié)調控制策略的可行性。第四,考慮到自適應控制自身的局限性,即對機器人非內部不確定性因素控制不理想。本文在已有方案的基礎上設計了干擾觀測器,兼顧了改善機器人參數(shù)不確定性和外部擾動等缺點。仿真結果表明,加入干擾觀測器的機器人系統(tǒng)在自適應與PCHD協(xié)調控制下具有較高的動態(tài)性能與穩(wěn)態(tài)性能,抗干擾能力強,預期效果良好。綜上所述,為最大程度減小內外部因素對機器人系統(tǒng)的影響與干擾,獲得較好的動態(tài)穩(wěn)態(tài)性能,本文以機器人為研究對象,給出了端口受控哈密頓與自適應協(xié)調控制方案,并在此基礎上設計了干擾觀測器進行仿真驗證,獲得了較好的預期效果。
[Abstract]:With the development of social economy and the improvement of related theories such as electromechanical, power electronics, artificial intelligence and various control strategies, robot technology has gradually matured, and has been widely used in many fields. Play an indispensable role. Accordingly, the study of its control system becomes increasingly important. As a high-order complex system, The robot will inevitably be affected by internal uncertain parameters and external disturbances during the actual operation. How to minimize the impact and interference of these factors on the system, and how to minimize the impact of these factors on the system, and how to minimize the impact of these factors on the system. The traditional robot control scheme often does not consider the joint drive motor, and only builds its model from the angle of its dynamics. On the basis of this, the controller is designed. Although good results can be achieved in theory, it is unsatisfactory in practical operation and has great limitations. Based on this topic, PMSM (permanent Magnet synchronous Motor) is used as the driving motor of robot, and PMSM (permanent Magnet synchronous Motor) is used as the driving motor of robot. On the basis of the modified model, the design process and method of the controller are given. Firstly, the purpose and significance of the research are introduced, and the research status and trend of robot control at home and abroad are briefly described. A new robot model is established by combining the dynamics model of robot with the mathematical model of joint driven motor (PMSM). Third, The port controlled Hamiltonian and adaptive coordinated control of the robot are studied, and the port controlled Hamiltonian controller and the adaptive controller are designed, respectively. The simulation results show that the system tracking signal is fast enough after adopting this scheme. At the same time, it has good steady-state performance, which preliminarily proves the feasibility of coordinated control strategy. 4th, considering the limitations of adaptive control, In this paper, the disturbance observer is designed on the basis of the existing scheme, which takes into account the shortcomings of improving the uncertainty of the robot parameters and the external disturbance. The simulation results show that, The robot system with disturbance observer has high dynamic and steady-state performance under adaptive and PCHD coordinated control, strong anti-jamming ability and good expected effect. In order to minimize the influence and interference of internal and external factors on the robot system and obtain better dynamic steady-state performance, a port controlled Hamiltonian and adaptive coordinated control scheme is presented in this paper. On this basis, the disturbance observer is designed and verified by simulation, and the expected results are obtained.
【學位授予單位】:青島大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP242
【參考文獻】
相關期刊論文 前10條
1 孫怡寧;;淺談人工智能與機器人的發(fā)展趨勢[J];電子測試;2016年23期
2 符曉玲;劉旭東;;基于自適應反步法和端口受控哈密頓理論的永磁同步電機控制[J];電機與控制應用;2016年10期
3 劉應新;于海生;;機器人的端口受控哈密頓與自適應混合控制[J];青島大學學報(工程技術版);2016年03期
4 譚傳接;楊向宇;趙世偉;;基于無源性的無刷直流電動機速度控制[J];微特電機;2016年08期
5 解洪超;于海生;;永磁同步電動機的哈密頓控制與DSP實現(xiàn)[J];微特電機;2016年05期
6 于瀟雁;陳力;;漂浮基柔性兩桿空間機械臂基于狀態(tài)觀測器的魯棒控制及振動控制[J];機械工程學報;2016年15期
7 王艷;于海生;于金鵬;;永磁同步電機速度的滑模與哈密頓協(xié)調控制研究[J];青島大學學報(工程技術版);2016年01期
8 黃肇;羅隆福;王曉芳;;永磁同步電機的端口受控哈密頓控制[J];電源技術;2016年03期
9 吳忠強;吳昌韓;賈文靜;趙立儒;;基于能量函數(shù)的永磁同步電機無速度傳感器H_∞控制[J];中國機械工程;2016年05期
10 ;2016年,五大機器人的發(fā)展趨勢[J];機床與液壓;2016年02期
相關博士學位論文 前1條
1 于海生;交流電機的能量成型與非線性控制研究[D];山東大學;2006年
相關碩士學位論文 前3條
1 彭詩友;幾類時變時滯神經(jīng)網(wǎng)絡的無源性分析[D];廣東工業(yè)大學;2016年
2 王國安;機器人PID控制技術的研究[D];東北大學;2008年
3 潘劍;基于滑模變結構控制的永磁同步電機伺服系統(tǒng)[D];浙江大學;2008年
,本文編號:1532560
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1532560.html