哈密瓜糖度可見近紅外光譜在線檢測系統(tǒng)設(shè)計研究
本文關(guān)鍵詞: 近紅外 在線檢測 哈密瓜 糖度 出處:《石河子大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:哈密瓜作為新疆的特色水果,深受人們的喜愛。近年來,哈密瓜每年的出口量逐年增加,但其產(chǎn)值卻未增長。哈密瓜在田間地頭不經(jīng)過任何檢測處理就直接進(jìn)入市場售賣,將會影響哈密瓜的品質(zhì)及售賣價格,不能做到按質(zhì)定價。本研究以新疆特色水果哈密瓜為研究對象,以哈密瓜糖度作為檢測指標(biāo),設(shè)計并搭建了基于可見近紅外光譜技術(shù)的哈密瓜糖度在線檢測系統(tǒng),該系統(tǒng)主要包含硬件部分和光譜采集軟件部分的設(shè)計。為驗證設(shè)計搭建的檢測系統(tǒng)的可行性和有效性,基于該平臺進(jìn)行一系列的試驗研究。同時運用不同的建模方法和不同的光譜預(yù)處理方法對哈密瓜樣品光譜及糖度進(jìn)行建模研究分析。本文主要完成的工作及得出的結(jié)論如下:(1)設(shè)計并搭建了哈密瓜糖度可見近紅外光譜在線檢測系統(tǒng),該系統(tǒng)主要包含硬件和光譜采集軟件兩部分的設(shè)計。硬件部分完成了輸送裝置、光照模塊、光譜采集裝置中相關(guān)儀器的選型及相關(guān)部件的設(shè)計;光譜采集軟件完成了光譜采集相關(guān)功能模塊的設(shè)計。(2)完成哈密瓜糖度可見近紅外光譜在線檢測系統(tǒng)的測試與集成,并進(jìn)行了在線試驗。利用該系統(tǒng)采集了哈密瓜三種不同速度下(0.1235m/s、0.15m/s、0.19675m/s)的在線光譜數(shù)據(jù),采用多元散射校正(MSC)、標(biāo)準(zhǔn)正態(tài)變量變換(SNV)、導(dǎo)數(shù)(SD)及其組合的方法對采集到的哈密瓜在線光譜進(jìn)行預(yù)處理,建立偏最小二乘法(PLS)模型分析不同預(yù)處理方法對其建模精度的影響,綜合對比三種速度下的偏最小二乘法(PLS)建模結(jié)果可得,選取的較優(yōu)預(yù)處理方法為SNV和SD結(jié)合的方法,選取的較優(yōu)在線光譜采集速度為0.1235m/s。(3)根據(jù)選取的較優(yōu)在線速度,建立了SMLR模型,盡量減少波段數(shù)量,為下一步快速檢測提供支持。結(jié)果表明,波段數(shù)在10到15時的限制條件下,波段數(shù)量為15時,所建模型效果相對較好,此時的相關(guān)系數(shù)rcv和交互驗證均方根誤差RMSECV分別為0.6187和0.741。模型所選擇的15個波段分別為437.76nm,476.33nm,536.11nm,580.47nm,593.97nm,619.04nm,638.32nm,659.54nm,667.25nm,673.03nm,703.89nm,752.10nm,819.60nm,865.88nm,925.66nm。(4)通過在線試驗驗證了設(shè)計搭建的哈密瓜糖度可見近紅外在線檢測系統(tǒng)具有一定的可行性。
[Abstract]:Hami melon, as the characteristic fruit of Xinjiang, is deeply loved by people. In recent years, the annual export volume of Hami melon has increased year by year. But its output value has not increased. Hami melon in the field without any test treatment directly into the market, will affect the quality and sale price of Hami melon. This study took Hami melon as the research object and the sugar content of Hami melon as the detection index. An on-line detection system for sugar content of Hami melon was designed and built based on visible near infrared spectroscopy. The system mainly includes the design of hardware and spectrum acquisition software. The feasibility and effectiveness of the detection system designed to verify the design. Based on this platform, a series of experiments were carried out. At the same time, different modeling methods and different spectral pretreatment methods were used to model and analyze the spectrum and sugar content of Hami melon sample. The conclusions are as follows:. (. 1) the on-line detection system of sugar content of Hami melon by visible near infrared spectroscopy was designed and built. The system mainly includes the design of hardware and spectrum acquisition software. The hardware part completes the selection of related instruments and the design of related parts in the transport device, illumination module, spectral acquisition device. Spectral acquisition software completed the design of spectral acquisition related function module. 2) completed the sugar content of Hami melon visible near infrared spectrum on-line detection system testing and integration. The on-line spectral data of 0.1235m / s 0.15m / s 0.19675m / s of Hami melon were collected by using the system. Multivariate scattering correction (MSCT), standard normal variable transform (SNV), derivative SDI) and their combination were used to preprocess the collected on-line spectrum of Hami melon. The partial least square (PLS) model is established to analyze the influence of different preprocessing methods on the modeling accuracy. The optimal pretreatment method is the combination of SNV and SD, and the optimal on-line spectral acquisition speed is 0.1235 m / s. The SMLR model is established to reduce the number of bands as much as possible and to provide support for the next rapid detection. The results show that the number of bands is 15:00 when the number of bands is limited from 10 to 15:00. The effect of the model is relatively good. The correlation coefficient rcv and the root-mean-square error (RMSECV) of cross-validation are 0.6187 and 0.741 respectively. The 15 bands selected by the model are 437.76 nm. 476.33nm,536.11nm,580.47nm,593.97nm,619.04nm,638.32nm,659.54nm. 667.25nm,673.03nm,703.89nm,752.10nm,819.60nm,865.88nm. 925.66 nm.f.) the feasibility of the system was verified by on-line test.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S652.1;TP274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王運祥;馬本學(xué);楊杰;王靜;葉晉濤;蔣偉;呂琛;張巍;;雙錐壓縮式哈密瓜承載托輥的設(shè)計及參數(shù)計算[J];農(nóng)機(jī)化研究;2016年09期
2 楊建麗;楊英;戶金鴿;;新疆哈密瓜生產(chǎn)中存在的主要問題及建議[J];新疆農(nóng)業(yè)科技;2013年04期
3 馬世榜;湯修映;徐楊;彭彥昆;田瀟瑜;付姓;;可見/近紅外光譜結(jié)合遺傳算法無損檢測牛肉pH值[J];農(nóng)業(yè)工程學(xué)報;2012年18期
4 陳小央;;甜瓜內(nèi)在品質(zhì)無損檢測方法研究進(jìn)展[J];中國蔬菜;2011年10期
5 徐惠榮;陳曉偉;應(yīng)義斌;;基于多元校正法的香梨糖度可見/近紅外光譜檢測[J];農(nóng)業(yè)機(jī)械學(xué)報;2010年12期
6 田海清;王春光;楊曉清;;厚皮甜瓜無損檢測方法的研究現(xiàn)狀及發(fā)展趨勢[J];農(nóng)機(jī)化研究;2010年10期
7 張淑娟;張海紅;王鳳花;趙聰慧;楊國強(qiáng);;柿子可溶性固形物含量的可見-近紅外光譜檢測[J];農(nóng)業(yè)工程學(xué)報;2009年S2期
8 田海清;應(yīng)義斌;徐惠榮;陸輝山;謝麗娟;;運動西瓜可見/近紅外光譜采集系統(tǒng)及品質(zhì)檢測試驗研究[J];光譜學(xué)與光譜分析;2009年06期
9 ;Determination of soluble solid content and acidity of loquats based on FT-NIR spectroscopy[J];Journal of Zhejiang University(Science B:An International Biomedicine & Biotechnology Journal);2009年02期
10 潘立剛;張縉;陸安祥;馬智宏;韓平;;農(nóng)產(chǎn)品質(zhì)量無損檢測技術(shù)研究進(jìn)展與應(yīng)用[J];農(nóng)業(yè)工程學(xué)報;2008年S2期
相關(guān)博士學(xué)位論文 前3條
1 陳香維;獼猴桃近紅外光譜無損檢測技術(shù)研究[D];西北農(nóng)林科技大學(xué);2009年
2 田海清;西瓜品質(zhì)可見/近紅外光譜無損檢測技術(shù)研究[D];浙江大學(xué);2006年
3 何乃波;山東果業(yè)發(fā)展與結(jié)構(gòu)優(yōu)化研究[D];山東農(nóng)業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前5條
1 張德虎;河套蜜瓜品質(zhì)可見近紅外光譜檢測研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2014年
2 李鋒霞;基于高光譜成像技術(shù)的哈密瓜堅實度檢測研究[D];石河子大學(xué);2014年
3 楊磊;梨子內(nèi)在品質(zhì)的近紅外漫反射光譜無損檢測技術(shù)研究[D];南京農(nóng)業(yè)大學(xué);2008年
4 王傳梁;基于近紅外漫反射光譜分析技術(shù)的大米加工精度檢測方法的研究[D];南京農(nóng)業(yè)大學(xué);2007年
5 劉蓉;近紅外光譜分析中模型優(yōu)化方法的初步研究[D];天津大學(xué);2003年
,本文編號:1464677
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1464677.html