分布式發(fā)電中蓄電池儲能裝置的監(jiān)控系統(tǒng)研究
本文關(guān)鍵詞: 監(jiān)控系統(tǒng) SOC估算 充放電保護 均衡保護 出處:《廈門理工學(xué)院》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著太陽能光伏、混合能源等分布式發(fā)電的迅速發(fā)展,分布式發(fā)電儲能裝置得到了廣泛應(yīng)用,對于分布式發(fā)電中蓄電池儲能裝置的監(jiān)控是一個急需解決的問題。研發(fā)一款高精度的分布式發(fā)電蓄電池儲能裝置監(jiān)控系統(tǒng)平臺是非常有必要的,同時也有很大的發(fā)展空間。隨著新型儲能電池材料的研制,鋰離子蓄電池以其能量高、電化學(xué)性能穩(wěn)定、輸出電流大等優(yōu)點被廣泛用作儲能電源。但是,串聯(lián)的鋰電池組在使用過程中存在一些問題,比如均衡問題,過充電、過放電和溫度過高都會影響其使用壽命和性能,嚴(yán)重時會導(dǎo)致電池組燃燒或者爆炸。因此,在使用過程中需要使用電池管理系統(tǒng)(Battery Management System,BMS)保護鋰電池組,實現(xiàn)過充電保護、過放電保護、短路保護、過溫保護和剩余電量SOC(State Of Charge)估計等功能。為了解決這些問題,論文主要是研制和開發(fā)一種分布式發(fā)電蓄電池儲能裝置監(jiān)控系統(tǒng),整個監(jiān)控系統(tǒng)的設(shè)計由多個功能模塊組建而成,主要工作有:(1)完成電池單體/多體電壓測量,用Shunt電流分流器測量電池組的電流;(2)通過測量的電池組電壓、電流值,通過估算電池的SOC來監(jiān)控電池組的容量,為整個監(jiān)控系統(tǒng)提供重要的電池參數(shù),并進行電池均衡監(jiān)測功能;(3)通過電池的單體電壓和電池組的電壓來進行電池過充/過放保護監(jiān)測功能;(4)通過RS485串口通訊將監(jiān)控信息與儲能監(jiān)控系統(tǒng)的中央處理器進行信息交流,同時還可以使用WIFI功能,通過無線終端實時監(jiān)控儲能狀態(tài),并進行相應(yīng)的控制措施。論文中選用飛思卡爾公司MK64系列單片機作為主控制器,首先完成了系統(tǒng)硬件電路設(shè)計、PCB繪制,然后在IAR開發(fā)環(huán)境下用C語言編寫軟件程序。最后完成了測控模塊軟硬件的調(diào)試工作,并且能通過搭建的系統(tǒng)測試平臺直觀地監(jiān)測到系統(tǒng)接收數(shù)據(jù)的變化情況、故障判斷等信息,驗證了整個系統(tǒng)的可靠性。
[Abstract]:With the rapid development of solar photovoltaic, hybrid energy and other distributed generation, distributed generation energy storage device has been widely used. It is an urgent problem to monitor the storage device of battery in distributed generation. It is very necessary to develop a high precision monitoring system platform for the storage device of storage battery in distributed generation. With the development of new energy storage battery materials, lithium ion battery is widely used as energy storage power source for its high energy, stable electrochemical performance and high output current. There are some problems in the use of series lithium batteries, such as equalization, overcharging, overdischarge and high temperature will affect their service life and performance. Severe cases can cause the battery pack to burn or explode. Therefore, the battery Management System should be used during use. BMS) protects lithium battery pack, realizes overcharge protection, over-discharge protection and short-circuit protection. Functions such as over-temperature protection and SOC(State of charge estimation. In order to solve these problems. This paper mainly studies and develops a distributed monitoring system for storage energy of battery. The design of the whole monitoring system is composed of several functional modules. The main work is: (1) to complete the cell cell / multi-body voltage measurement, using Shunt current shunt to measure the current of the battery pack; By measuring the voltage and current value of the battery pack and estimating the SOC of the battery, the capacity of the battery pack is monitored, which provides important battery parameters for the whole monitoring system, and carries on the cell balance monitoring function; (3) to monitor the overcharge / overdischarge protection of the battery through the cell voltage and the voltage of the battery pack; Through the RS485 serial port communication, the monitoring information can be exchanged with the central processor of the energy storage monitoring system. At the same time, the WIFI function can be used to monitor the energy storage status in real time through the wireless terminal. In this paper, the MK64 series MCU of Freescale Company is selected as the main controller. Firstly, the hardware circuit design of the system is completed. Then the software program is written in C language under the IAR development environment. Finally, the debugging of the hardware and software of the measurement and control module is completed. The reliability of the whole system is verified by the system test platform, which can directly monitor the change of the data received by the system, fault judgment and other information.
【學(xué)位授予單位】:廈門理工學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM912;TP277
【參考文獻】
相關(guān)期刊論文 前10條
1 劉艷敏;王建軍;丁雷青;吳季浩;高敬貝;周毓穎;;微網(wǎng)光伏儲能發(fā)電并網(wǎng)系統(tǒng)特性研究[J];華東電力;2014年10期
2 張磊;周少豐;向平;葛昊祥;;光伏發(fā)電儲能系統(tǒng)充放電控制電路設(shè)計[J];微特電機;2014年08期
3 胡文雷;楊潤生;解璞;張婷婷;;混合能源互補供電系統(tǒng)能量管理與控制技術(shù)研究[J];電網(wǎng)與清潔能源;2014年06期
4 芮騏驊;趙亮;王磊;李繼云;;礦用大容量磷酸鐵鋰電池管理系統(tǒng)設(shè)計[J];工礦自動化;2014年02期
5 向平;周少豐;張磊;;基于超級電容和蓄電池的光伏系統(tǒng)儲能研究[J];機電一體化;2013年12期
6 李娜;白愷;陳豪;劉平;牛虎;;磷酸鐵鋰電池均衡技術(shù)綜述[J];華北電力技術(shù);2012年02期
7 侯維巖;曾磊;張海峰;;工業(yè)無線測控網(wǎng)絡(luò)中WiFi無線終端設(shè)計與實現(xiàn)[J];自動化與儀表;2011年08期
8 張建剛;王冬云;侯蕊;;基于單片機的光伏電站充放電控制設(shè)計[J];可編程控制器與工廠自動化;2011年08期
9 趙錦成;解璞;劉金寧;劉偉;;混合能源互補供電在武器裝備中應(yīng)用研究[J];電網(wǎng)與清潔能源;2011年03期
10 張寅孩;林俊;黎繼剛;;基于儲能電感對稱分布的動態(tài)均衡充電的研究[J];電工技術(shù)學(xué)報;2010年10期
相關(guān)碩士學(xué)位論文 前5條
1 李天驕;分布式發(fā)電對輸電網(wǎng)調(diào)度的影響分析[D];山東大學(xué);2014年
2 肖雪峰;鋰電池荷電狀態(tài)(SOC)自適應(yīng)卡爾曼濾波估算及實現(xiàn)[D];湖南工業(yè)大學(xué);2014年
3 宋新超;基于WIFI技術(shù)的生產(chǎn)數(shù)據(jù)采集管理終端的設(shè)計與開發(fā)[D];南京理工大學(xué);2013年
4 陳春飛;一種鋰離子電池組充放電管理方式的研究[D];浙江大學(xué);2011年
5 馬巍;電動汽車鉛酸蓄電池特性建模與荷電狀態(tài)估計[D];長安大學(xué);2009年
,本文編號:1456867
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1456867.html