鑿巖機器人鉆臂定位控制研究
本文關鍵詞:鑿巖機器人鉆臂定位控制研究 出處:《江西理工大學》2017年碩士論文 論文類型:學位論文
更多相關文章: 鑿巖機器人鉆臂 運動學 定位控制 CEOPSO算法 動力學參數辨識 誤差補償
【摘要】:鉆爆法(鉆孔、裝藥、爆破開挖巖石的方法)是井下采礦和隧道開挖普遍采用的施工方法。鑿巖機器人具有高度自主操作能力,能有效改善人工半機械化鑿巖的作業(yè)環(huán)境、降低工人的勞動強度,提高開采效率。其鉆臂的定位精度和速度直接關系到巖層的鉆爆精度,影響炮孔工藝性、工程效率、礦石的貧化率及利用率,是鑿巖機器人領域重要的研究課題之一。地下采礦巷道和施工隧道狹窄而曲折,為保障作業(yè)的靈活性、避障性和操作性能,鑿巖機器人普遍采用冗余多自由度關節(jié)耦合鉆臂,增加了其定位控制運動學逆解的復雜性和難度,同時,也降低了求解效率和定位精度。針對鑿巖機器人鉆臂定位控制運動學求解、動力學參數辨識和定位誤差補償方法等,本文開展的主要研究工作如下:基于D-H方法建立鉆臂運動學模型,推導出鉆臂執(zhí)行機構末端相對機身的正向運動學方程。提出一種交叉精英反向粒子群優(yōu)化(CEOPSO)算法搜索鉆臂目標位姿逆解。將交叉算子引入精英反向粒子群優(yōu)化算法中,在維護粒子個體與最優(yōu)解之間信息交換的基礎上,增加粒子個體之間的信息交換,采用自適應慣性權重和交叉概率參數控制技術,提高算法的搜索能力和鉆臂定位效率。仿真結果表明,CEOPSO算法迭代過程平穩(wěn),提高了鉆臂定位控制性能,具有較好的工程應用價值。鉆臂結構龐大,動力學模型參數辨識困難且精度低。采用牛頓-歐拉法建立鉆臂動力學模型。為減少辨識過程因關節(jié)運動產生的沖擊震蕩,基于傅立葉級數規(guī)劃鉆臂運動關節(jié)軌跡。在CAD辨識法基礎上,采用理論辨識法對鉆臂各關節(jié)動力學參數進行分步辨識,為鉆臂動力學的準確建模提供精確參數。建立包含參數誤差和形變誤差的鉆臂定位誤差模型。設計了一種5參數D-H鉆臂模型。采用疊加法求解大臂、推進梁和翻轉機構關節(jié)的撓度變形。通過引入一個虛擬關節(jié),簡化形變誤差計算模型。應用CEOPSO算法搜索鉆臂的定位誤差補償值,仿真結果表明所提出的算法能有效提高鉆臂定位精度。
[Abstract]:Drilling and blasting method (drilling, charging, blasting rock excavation method) is widely used in underground mining and tunnel excavation. The drilling robot has a high degree of autonomous operation ability. It can effectively improve the working environment of artificial semi-mechanized rock drilling, reduce the labor intensity of workers, and improve the mining efficiency. The positioning accuracy and speed of the drilling arm are directly related to the drilling and blasting accuracy of rock strata and affect the technological characteristics of the blasting holes. Engineering efficiency, ore dilution rate and utilization ratio are one of the important research topics in the field of rock drilling robot. Underground mining roadway and construction tunnel are narrow and tortuous, in order to ensure the flexibility of operation, obstacle avoidance and operational performance. The redundant multi-degree-of-freedom joint coupling arm is widely used in rock drilling robot, which increases the complexity and difficulty of kinematics inverse solution of positioning control. It also reduces the solving efficiency and positioning accuracy. The kinematics solution, dynamic parameter identification and positioning error compensation method for drilling arm positioning control of rock drilling robot are also presented. The main work of this paper is as follows: based on D-H method, the kinematics model of drill arm is established. The forward kinematics equation of the end of the arm actuator relative to the fuselage is derived. A cross elite inverse particle swarm optimization (CEOPSO) is presented. The crossover operator is introduced into the elite inverse particle swarm optimization algorithm. On the basis of maintaining the information exchange between particle individual and optimal solution, the information exchange between particle individual is increased, and adaptive inertial weight and cross-probability parameter control technique are adopted. The simulation results show that the iterative process of the CEOPSO algorithm is stable, the performance of the drilling arm positioning control is improved, and it has good engineering application value. The structure of the drill arm is huge. The parameter identification of dynamic model is difficult and the precision is low. Newton-Euler method is used to establish the dynamic model of drill arm. In order to reduce the impact shock caused by joint motion in the identification process. Based on the Fourier series programming the trajectory of the moving joint of the drill arm. Based on the CAD identification method, the dynamic parameters of the drill arm joints are identified step by step by using the theory identification method. This paper provides accurate parameters for accurate modeling of drill arm dynamics, establishes the positioning error model of drill arm including parameter error and deformation error, and designs a 5-parameter D-H arm model. The superposition method is used to solve the large arm. By introducing a virtual joint, the deformation error calculation model is simplified, and the CEOPSO algorithm is used to search the position error compensation value of the drill arm. Simulation results show that the proposed algorithm can effectively improve the precision of arm positioning.
【學位授予單位】:江西理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP242
【參考文獻】
相關期刊論文 前10條
1 曲冠政;;臺車中深孔采礦中的測量方法研究[J];中國礦業(yè);2016年10期
2 蔡小虎;;大型立交橋中深孔爆破鉆孔施工控制[J];爆破;2016年02期
3 黃松;田娜;紀志成;;基于自適應變異概率粒子群優(yōu)化算法的研究[J];系統(tǒng)仿真學報;2016年04期
4 楊優(yōu);孫先松;;機器人齊次變換矩陣的研究[J];機械工程師;2016年03期
5 房立金;黨鵬飛;;基于量子粒子群優(yōu)化算法的機器人運動學標定方法[J];機械工程學報;2016年07期
6 張?zhí)m;聶玉峰;;一種融合差分進化的量子粒子群優(yōu)化算法[J];計算機仿真;2016年02期
7 陳漢武;朱建鋒;阮越;劉志昊;趙生妹;;帶交叉算子的量子粒子群優(yōu)化算法[J];東南大學學報(自然科學版);2016年01期
8 王憲倫;喻洋;王道全;崔玉霞;;鑿巖機器人的建模與運動學分析[J];礦山機械;2016年01期
9 段晉軍;甘亞輝;戴先中;徐祥;曹鵬飛;;基于可操作度評價的冗余機器人逆解求解方法[J];華中科技大學學報(自然科學版);2015年S1期
10 張華;夏菠;;基于雙目視覺的機器人自定位方法研究[J];華中科技大學學報(自然科學版);2015年S1期
相關博士學位論文 前1條
1 謝習華;隧道鑿巖機器人控制系統(tǒng)及定位誤差分析與補償研究[D];中南大學;2009年
相關碩士學位論文 前2條
1 陶恒銘;六自由度工業(yè)機器人運動分析與控制技術的研究[D];合肥工業(yè)大學;2014年
2 劉澤鑫;電腦鑿巖臺車鉆臂動力學分析[D];西南交通大學;2012年
,本文編號:1419222
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1419222.html