基于光電開關(guān)圓弧陣列的溫室自主沿邊移動平臺研發(fā)
本文關(guān)鍵詞:基于光電開關(guān)圓弧陣列的溫室自主沿邊移動平臺研發(fā) 出處:《江蘇大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 移動平臺 沿邊導(dǎo)航 光電開關(guān) 圓弧陣列 位姿
【摘要】:在國內(nèi)溫室環(huán)境下,由于空間狹小、溫度濕度高、工作環(huán)境惡劣,員工需要進(jìn)行頻繁搬運、施藥、采摘等作業(yè),勞動強度大而效率低,溫室生產(chǎn)中急需物料搬運和移動作業(yè)機械,因此各種型式的溫室移動作業(yè)機器人亦陸續(xù)出現(xiàn)。本研究來源于江蘇省重點科技支撐項目,針對溫室內(nèi)多作業(yè)工況以及通道行間的自動作業(yè)等需求,開發(fā)了基于光電開關(guān)圓弧陣列的自主沿邊導(dǎo)航移動作業(yè)平臺,其研究主要內(nèi)容與成果如下:(1)從結(jié)構(gòu)簡單,靈活性高,通用性強出發(fā),研發(fā)了六輪差速結(jié)構(gòu)的移動平臺。設(shè)計了萬向輪浮動支撐結(jié)構(gòu)以保證移動平臺的所有車輪同時著地,設(shè)計了作業(yè)模塊接口以實現(xiàn)作業(yè)模塊的切換與自動識別。在Nx Nastran軟件環(huán)境下對移動平臺骨架模型進(jìn)行了靜力學(xué)校核,最后對移動平臺控制系統(tǒng)的關(guān)鍵電器元件以及電路進(jìn)行了設(shè)計。(2)針對現(xiàn)有溫室移動機器人沿邊導(dǎo)航技術(shù)的精度與實時性不足等問題,提出了一種基于光電開關(guān)圓弧陣列的沿邊導(dǎo)航方法。提出了基于圓弧陣列理想目標(biāo)帶原理的位姿檢測與調(diào)控方法,并建立了基于光電圓弧陣列信號觸發(fā)數(shù)與觸發(fā)中心序號雙指標(biāo)的沿邊位姿檢測模型,按照該雙指標(biāo)的不同閾值進(jìn)行移動平臺位姿狀態(tài)歸類并觸發(fā)控制系統(tǒng)調(diào)用對應(yīng)的調(diào)控軌跡程序,進(jìn)而根據(jù)由該雙指標(biāo)數(shù)值計算得到的準(zhǔn)確位姿給定各調(diào)控軌跡參數(shù),實現(xiàn)實時的沿邊導(dǎo)航。(3)實驗驗證結(jié)果表明,在0.15m/s行進(jìn)速度內(nèi),移動平臺的沿邊位置與姿態(tài)偏差分別保持在-35mm~+15mm和-5°~+5°范圍內(nèi),能夠滿足實際施藥、搬運等作業(yè)的行走需求。同時移動平臺的調(diào)控周期約為2m,實現(xiàn)了溫室內(nèi)低調(diào)控頻度的沿邊平順導(dǎo)航,并且沿下沉路沿行走時,能夠適應(yīng)300mm長的雜物。該方法為實現(xiàn)溫室環(huán)境下的低成本快速沿邊導(dǎo)航提供了新的技術(shù)思路。
[Abstract]:In the domestic greenhouse environment, due to the small space, high temperature and humidity, poor working environment, employees need to carry out frequent handling, spraying, picking and other operations, labor intensity and low efficiency. Material handling and moving machines are urgently needed in greenhouse production, so various types of greenhouse mobile robots have appeared one after another. This research comes from the key scientific and technological support projects in Jiangsu Province. In order to meet the needs of multi-working conditions in greenhouse and automatic operation between channels, a mobile platform for autonomous edge navigation based on photoelectric switch arc array is developed. The main contents and results of the research are as follows: (1) from the point of view of simple structure, high flexibility and strong generality. A six-wheel differential mobile platform is developed, and a universal wheel floating support structure is designed to ensure that all the wheels of the mobile platform land at the same time. The interface of the job module is designed to realize the switch and automatic recognition of the job module. The framework model of the mobile platform is checked statically under the environment of NX Nastran software. Finally, the key electrical components and circuits of the mobile platform control system are designed. In this paper, a method of edge navigation based on photoelectric switch arc array is proposed, and a method of position and pose detection and control based on the principle of ideal target band of arc array is presented. The edge position detection model based on the trigger number and the sequence number of the trigger center of the photoelectric arc array is established. According to the different thresholds of the two indexes, the position and pose status of the mobile platform is classified and the corresponding control program is called by the trigger control system. Furthermore, according to the accurate position and orientation obtained by the double-index numerical calculation, the real time navigation along the edge is realized. The experimental results show that it is within 0.15 m / s travel speed. The side position and attitude deviation of the mobile platform are kept in the range of -35mm ~ 15mm and -5 擄~ 5 擄, respectively, which can satisfy the actual application. At the same time, the control period of the mobile platform is about 2 m, which realizes the smooth navigation along the edge of the low frequency control in the greenhouse, and walks along the sinking road. This method can adapt to 300mm long sundries. This method provides a new technical idea for realizing low cost and fast edge navigation in greenhouse environment.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP242;S625
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 葛君山;;基于單片機和GPS定位的自主導(dǎo)航采摘機器人設(shè)計[J];農(nóng)機化研究;2016年12期
2 金彥;胡威;劉陽;陳春玲;;基于單片機的循跡噴藥小車設(shè)計[J];農(nóng)業(yè)科技與裝備;2016年05期
3 劉中正;玄冠濤;邵園園;吳彥強;王連文;;溫室自走式施肥播種覆膜一體機的設(shè)計與試驗[J];農(nóng)機化研究;2016年08期
4 王曉楠;伍萍輝;馮青春;王國華;;番茄采摘機器人系統(tǒng)設(shè)計與試驗[J];農(nóng)機化研究;2016年04期
5 潘金水;;設(shè)施農(nóng)業(yè)裝備技術(shù)的推廣與應(yīng)用[J];現(xiàn)代農(nóng)機;2016年01期
6 劉國有;;農(nóng)業(yè)機械導(dǎo)航中的GPS定位誤差分析[J];時代農(nóng)機;2016年01期
7 賈士偉;李軍民;邱權(quán);唐慧娟;;基于激光測距儀的溫室機器人道路邊緣檢測與路徑導(dǎo)航[J];農(nóng)業(yè)工程學(xué)報;2015年13期
8 趙洲;朱新華;何穎;賀歡歡;鄭豪;汪鑫;安冬潔;;機器人在溫室中的應(yīng)用研究[J];農(nóng)機化研究;2015年01期
9 江,
本文編號:1418088
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1418088.html