直線電機(jī)懸浮平臺(tái)系統(tǒng)的二型模糊滑?刂
本文關(guān)鍵詞:直線電機(jī)懸浮平臺(tái)系統(tǒng)的二型模糊滑?刂 出處:《沈陽工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 直線電機(jī)懸浮平臺(tái) 滑?刂 區(qū)間二型模糊系統(tǒng) 分?jǐn)?shù)階微積分 解耦控制
【摘要】:本文以二自由度(Two Degrees of Freedom,2-DOF)的直線電機(jī)懸浮平臺(tái)系統(tǒng)為研究對(duì)象?紤]懸浮系統(tǒng)要求在兩個(gè)2-DOF方向上的獨(dú)立控制,以及系統(tǒng)對(duì)強(qiáng)魯棒性和高精度的要求,傳統(tǒng)控制策略無法實(shí)現(xiàn)系統(tǒng)的高性能要求。本文根據(jù)滑?刂频姆蔷性控制特點(diǎn),設(shè)計(jì)具有解耦效果的滑?刂破,并結(jié)合區(qū)間二型模糊系統(tǒng)(Interval Type-2 Fuzzy Logic System,IT2-FLS)、分?jǐn)?shù)階微積分等理論和方法,針對(duì)懸浮系統(tǒng)的變量間存在的非線性耦合以及不確定性因素?cái)_動(dòng)的問題進(jìn)行控制策略研究,主要研究內(nèi)容如下:在對(duì)懸浮平臺(tái)系統(tǒng)的數(shù)學(xué)模型分析的基礎(chǔ)上,考慮懸浮系統(tǒng)運(yùn)行中受負(fù)載阻力擾動(dòng)、參數(shù)變化等不確定因素的影響,設(shè)計(jì)滑?刂破饕蕴岣呦到y(tǒng)的魯棒性。同時(shí)利用滑?刂谱陨砜梢越怦钐匦,不加入單獨(dú)的解耦控制器,對(duì)雙輸入雙輸出的懸浮系統(tǒng)的輸入與輸出之間的耦合進(jìn)行解耦。將系統(tǒng)看成兩個(gè)單輸入單輸出(SISO)的子系統(tǒng)并分別設(shè)計(jì)滑模面,利用控制層次化的思想,根據(jù)Lyapunov理論設(shè)計(jì)滑?刂坡墒箖蓚(gè)子系統(tǒng)的狀態(tài)量分別收斂到各自滑模面,達(dá)到解耦的目的,使系統(tǒng)可以在2-DOF的方向?qū)崿F(xiàn)高精度定位。采用區(qū)間二型模糊控制器取代滑模控制的切換項(xiàng),降低由于抖振造成系統(tǒng)性能下降的影響。仿真結(jié)果表明,設(shè)計(jì)的解耦區(qū)間二型模糊滑?刂破鲗(shí)現(xiàn)了輸入與輸出狀態(tài)量之間的解耦,區(qū)間二型模糊系統(tǒng)相對(duì)普通一型模糊系統(tǒng)在處理不確定性問題上,具有更好的表現(xiàn),該控制策略實(shí)現(xiàn)了系統(tǒng)對(duì)自身參數(shù)變化以及突加負(fù)載阻力引起的擾動(dòng)具有較好的抑制作用,保證系統(tǒng)強(qiáng)魯棒性的同時(shí),也有效地削弱了系統(tǒng)的抖振?紤]分?jǐn)?shù)階微積分具有柔化信號(hào)的特性以及其它優(yōu)點(diǎn),結(jié)合滑?刂瓶梢赃M(jìn)一步提高系統(tǒng)性能,設(shè)計(jì)了區(qū)間二型模糊分?jǐn)?shù)階滑?刂啤T趯(duì)系統(tǒng)設(shè)計(jì)解耦的過程中,設(shè)計(jì)分?jǐn)?shù)階滑模面以及分?jǐn)?shù)階趨近律。并采用一個(gè)區(qū)間二型模糊控制器替換滑?刂魄袚Q項(xiàng)中的增益與不連續(xù)的符號(hào)函數(shù)的乘積。仿真結(jié)果表明,區(qū)間二型模糊分?jǐn)?shù)階滑模控制比區(qū)間二型模糊整數(shù)階滑模具有更好地控制性能,系統(tǒng)對(duì)負(fù)載和參數(shù)變化擾動(dòng)具有更強(qiáng)的魯棒性。
[Abstract]:This paper deals with two Degrees of Freedom with two degrees of freedom. Considering the independent control of the suspension system in two 2-DOF directions and the requirement of strong robustness and high precision of the system, the linear motor suspension platform system based on 2-DOF is studied. The traditional control strategy can not meet the high performance requirements of the system. According to the nonlinear control characteristics of sliding mode control, a sliding mode controller with decoupling effect is designed in this paper. The theory and method of interval Type-2 Fuzzy Logic system IT2-FLSU, fractional calculus and so on are combined. The control strategy for the nonlinear coupling between variables and the disturbance of uncertain factors is studied. The main contents are as follows: on the basis of the mathematical model analysis of the suspended platform system. The sliding mode controller is designed to improve the robustness of the suspension system by considering the uncertain factors such as load resistance disturbance and parameter change in the operation of the suspension system. At the same time, the sliding mode control itself can be decoupled. No separate decoupling controller is added. Decoupling the coupling between input and output of double input and double output suspension system, the system is regarded as two subsystems of single input and single output SISO, and the sliding mode surface is designed respectively. According to the theory of Lyapunov, the sliding mode control law is designed to make the state of the two subsystems converge to the respective sliding mode surface, so that the decoupling can be achieved. The system can achieve high precision positioning in the direction of 2-DOF. The switching term of sliding mode control is replaced by interval 2 fuzzy controller to reduce the effect of buffeting on the performance of the system. The simulation results show that. The decoupling interval type 2 fuzzy sliding mode controller realizes the decoupling between the input and output state variables. The interval type 2 fuzzy system has better performance in dealing with the uncertainty than the common type 1 fuzzy system. The control strategy can restrain the disturbance caused by the change of the system parameters and the load resistance, and ensure the strong robustness of the system at the same time. Considering that fractional calculus has the characteristics of soft signal and other advantages, combined with sliding mode control, the system performance can be further improved. The interval 2 fuzzy fractional sliding mode control is designed in the process of decoupling the design of the system. The fractional sliding mode surface and fractional approach law are designed, and a fuzzy controller of interval type 2 is used to replace the product of the gain in the switching term of sliding mode control and the discontinuous symbol function. The simulation results show that. Interval 2 fuzzy fractional sliding mode control has better control performance than interval 2 fuzzy integral order sliding mode, and the system is more robust to disturbance of load and parameter variation.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM359.4;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李澤源;張文農(nóng);張奕黃;徐項(xiàng);;基于預(yù)估觀測器的二自由度速度控制器設(shè)計(jì)[J];控制與決策;2015年11期
2 張新華;孫玉坤;項(xiàng)倩雯;楊澤斌;;一種動(dòng)圈式磁懸浮永磁平面電機(jī)實(shí)時(shí)電流分配策略[J];中國電機(jī)工程學(xué)報(bào);2013年06期
3 張碧陶;皮佑國;;永磁同步電機(jī)伺服系統(tǒng)模糊分?jǐn)?shù)階滑?刂芠J];控制與決策;2012年12期
4 藍(lán)益鵬;張武;張鳳閣;;直接磁懸浮永磁直線電動(dòng)機(jī)的魯棒控制[J];電工技術(shù)學(xué)報(bào);2011年05期
5 潘永平;黃道平;孫宗海;;Ⅱ型模糊控制綜述[J];控制理論與應(yīng)用;2011年01期
6 彭yN帆;袁波;曹向群;;光刻機(jī)技術(shù)現(xiàn)狀及發(fā)展趨勢[J];光學(xué)儀器;2010年04期
7 蔚東曉;賈霞彥;;模糊控制的現(xiàn)狀與發(fā)展[J];自動(dòng)化與儀器儀表;2006年06期
8 楊霞,李強(qiáng),郭慶鼎,張博舒;基于數(shù)控機(jī)床進(jìn)給用磁懸浮直線電機(jī)摩擦的消除[J];組合機(jī)床與自動(dòng)化加工技術(shù);2005年07期
9 楊福興;光學(xué)零件的超精密加工技術(shù)[J];航空制造技術(shù);2004年05期
10 徐德鴻,吳長春,封偉,陳敏;基于H_∞理論的薄鋼板磁浮控制研究[J];電工技術(shù)學(xué)報(bào);2000年04期
,本文編號(hào):1416157
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1416157.html