基于力電信號的關(guān)節(jié)運(yùn)動(dòng)意圖研究
本文關(guān)鍵詞:基于力電信號的關(guān)節(jié)運(yùn)動(dòng)意圖研究 出處:《昆明理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 控制肌群 PVDF 壓電信號 運(yùn)動(dòng)意圖
【摘要】:第一次有外骨骼的概念是在1960年左右,但因其涉及的領(lǐng)域太多,所以一直沒有太大的進(jìn)展,而在近十年終于對外骨骼方面有所突破。近年來,外骨骼系統(tǒng)收到了極大的關(guān)注,對于能夠突破自身極限這點(diǎn)便非常的誘惑人,在眾多領(lǐng)域也有著不菲的成就,例如醫(yī)療康復(fù)訓(xùn)練、身體支撐、運(yùn)動(dòng)輔助等方面。人們穿戴著智能外骨骼,一方面能夠操保護(hù)自己并支撐身體,另一方面也能自由的控制它來完成很多以前一個(gè)人做不到的事情。關(guān)節(jié)是人體中至關(guān)重要的結(jié)構(gòu),本文以肘關(guān)節(jié)為主要研究對象。肘關(guān)節(jié)是一個(gè)很復(fù)雜的結(jié)構(gòu),在上肢中有著不可忽視的功能,不僅連接手、腕,還與肩關(guān)節(jié)緊密相連,對人體來說非常重要。肘關(guān)節(jié)是上肢的中間關(guān)節(jié),位置介于上臂與前臂之間,二者構(gòu)成具有幾何形態(tài)的機(jī)械鏈,近似一個(gè)兩腳規(guī)樣。為了能夠完美發(fā)揮手的作用,作為主要功能的前臂的旋轉(zhuǎn)運(yùn)動(dòng)以及伸臂和屈臂,與肩關(guān)節(jié)共同協(xié)作,保證了手在身體附近的任意位置的自由移動(dòng)。在人們的日常工作、生活中,肘關(guān)節(jié)都起著非常重要的作用。例如當(dāng)人們需要拿取食物,這時(shí)肘關(guān)節(jié)不僅要伸直,還要進(jìn)行旋前,手便可以拿到食物,然后后屈肘進(jìn)行旋后的時(shí)候,手就可以伸到肩和口的位置,此時(shí)食物便能比較方便的被人體攝取;又比如在各種上肢運(yùn)動(dòng)的體育賽事中,如若技術(shù)動(dòng)作不夠嫻熟、訓(xùn)練負(fù)荷過載、前期沒有足夠的熱身活動(dòng)以及肌肉過于疲勞等一系列經(jīng)常造成肘關(guān)節(jié)損傷。經(jīng)研究表明,肘關(guān)節(jié)周圍的控制肌群決定了安全程度。所以研究控制肌群會有相當(dāng)大的影響,不僅在醫(yī)學(xué)、體育等領(lǐng)域,還能同時(shí)預(yù)防肘關(guān)節(jié)的病變,這能起到非常積極的作用。智能外骨骼系統(tǒng)技術(shù)的關(guān)鍵點(diǎn)在于識取人體的運(yùn)動(dòng)意圖,也就是運(yùn)動(dòng)信息的獲取以及運(yùn)動(dòng)意圖的識別。采集肌電信號和腦電信號為目前主流的信息獲取方式,但這兩種采集方式都存在若干缺點(diǎn),比如易受肌膚導(dǎo)電性、體溫變化、心電信號等干擾。另外,由于肌電信號的頻譜分布比較窄,而且信號值也很弱,所以在實(shí)際采集的時(shí)候,信號的一致性和可靠性難以保證。在前期研究的基礎(chǔ)上,針對以上提到的問題,進(jìn)一步建立了以控制肌群的壓電信號為輸入,關(guān)節(jié)角度軌跡為輸出的肘關(guān)節(jié)生物力學(xué)模型。以單自由度的肘關(guān)節(jié)屈伸為主要研究對象,搭建針對肘關(guān)節(jié)的運(yùn)動(dòng)信息采集系統(tǒng),并研究了多種多傳感器的數(shù)據(jù)融合估計(jì)算法,再進(jìn)行仿真比較之后,確定了卡爾曼自適應(yīng)濾波算法為最合適,最后通過實(shí)驗(yàn)進(jìn)行驗(yàn)證建立的肘關(guān)節(jié)生物力學(xué)模型,將計(jì)算得出的關(guān)節(jié)角度軌跡與實(shí)際測得關(guān)節(jié)軌跡角度相比,發(fā)現(xiàn)擬合效果良好,說明通過采集肘關(guān)節(jié)運(yùn)動(dòng)過程中的壓電信號可以反映肘關(guān)節(jié)的運(yùn)動(dòng)意圖。
[Abstract]:The first exoskeleton concept was around 1960, but it has not made much progress because of its many fields, and has finally made a breakthrough in exoskeleton in recent years. Exoskeleton system has received a great deal of attention, the ability to break through the limits of this point is very tempting, in many areas also have a lot of achievements, such as medical rehabilitation training, physical support. Sports aids. People wear intelligent exoskeletons, on the one hand can operate to protect themselves and support the body. On the other hand, it can be freely controlled to accomplish a lot of things that can not be done by one person before. The joint is the most important structure in human body. In this paper, the elbow joint is the main research object. The elbow joint is a very complex structure. In the upper limb has the function which cannot be ignored, not only connects the hand, the wrist, but also closely connects with the shoulder joint, is very important to the human body. The elbow joint is the upper limb middle joint, the position lies between the upper arm and the forearm. In order to play the role of the hand perfectly, the rotation of the forearm, as the main function, as well as the extension and flexion of the arm, and the shoulder joint work together. The elbow joint plays a very important role in people's daily work and life. For example, when people need to take food, the elbow joint should not only be straightened. Also before the rotation, hands can get food, and then elbow after the rotation, the hand can reach to the shoulder and mouth position, this time food can be more convenient for human consumption; For example, in various upper limb sports events, if the technical movement is not skilled enough, the training load overload. A series of injuries to the elbow, such as insufficient warm-up activity and excessive muscle fatigue, have been reported. The control muscle group around the elbow determines the safety degree. Therefore, the study of the control muscle group will have a considerable impact, not only in medicine, sports and other fields, but also to prevent the elbow disease. This can play a very positive role. The key point of intelligent exoskeleton system technology is to recognize the motion intention of the human body. In other words, the acquisition of motion information and the recognition of motion intention. The acquisition of EMG and EEG signals is the mainstream way of information acquisition, but both of these two methods have some shortcomings, such as vulnerable to skin conductivity. In addition, because the spectrum distribution of EMG signal is relatively narrow, and the signal value is very weak, so in the actual acquisition time. It is difficult to ensure the consistency and reliability of the signal. Based on the previous research, we further establish the control of the muscle group of electrovoltage as the input to the above mentioned problems. The biomechanical model of elbow joint with angle trajectory is output. Taking the single degree of freedom elbow flexion and extension as the main research object, a motion information collection system for the elbow joint is built. Several multi-sensor data fusion estimation algorithms are studied, and the simulation results show that the Kalman adaptive filtering algorithm is the most suitable. At last, the biomechanical model of elbow joint is verified by experiment. Comparing the calculated joint angle trajectory with the actual joint trajectory angle, it is found that the fitting effect is good. The results show that the elbows motion intention can be reflected by collecting the electropressure-electric signals during the elbow motion.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212;R318
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 席道瑛,,鄭永來;PVDF壓電計(jì)在動(dòng)態(tài)應(yīng)力測量中的應(yīng)用[J];爆炸與沖擊;1995年02期
2 周洋,萬建國,陶寶祺;PVDF壓電薄膜的結(jié)構(gòu)、機(jī)理與應(yīng)用[J];材料導(dǎo)報(bào);1996年05期
3 韓慶斌,鄭之和,李新志,李菲霰;肘關(guān)節(jié)骨折的手術(shù)治療(附58例報(bào)告)[J];中國矯形外科雜志;2003年08期
4 李焰,鐘方平,劉乾,劉瑜,秦學(xué)軍,譚紅梅;PVDF在動(dòng)態(tài)應(yīng)變測量中的應(yīng)用[J];爆炸與沖擊;2003年03期
5 具典淑,周智,歐進(jìn)萍;PVDF壓電薄膜的應(yīng)變傳感特性研究[J];功能材料;2004年04期
6 楊冰,牛欣,王玉來;脈診儀的研制及分析方法的研究進(jìn)展(綜述)[J];北京中醫(yī)藥大學(xué)學(xué)報(bào);2000年06期
7 張勇,王雪霞,侯文根,田社聚;肘關(guān)節(jié)單純后脫位治療分析[J];齊齊哈爾醫(yī)學(xué)院學(xué)報(bào);2003年07期
8 劉剛;黃一;董維杰;孫宇;;油漆涂層下PVDF的應(yīng)變傳感及測量方法研究[J];壓電與聲光;2007年05期
9 趙東升;;PVDF壓電薄膜傳感器的制作研究[J];常州輕工職業(yè)技術(shù)學(xué)院學(xué)報(bào);2006年02期
10 李爽;羅志增;;PVDF足底力傳感器設(shè)計(jì)[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年S1期
相關(guān)碩士學(xué)位論文 前6條
1 汪超;肘關(guān)節(jié)撞擊癥關(guān)節(jié)鏡微創(chuàng)治療臨床療效評價(jià)[D];安徽醫(yī)科大學(xué);2014年
2 高靜;甘肅省業(yè)余網(wǎng)球選手正手擊球技術(shù)與運(yùn)動(dòng)損傷關(guān)系的研究[D];西北師范大學(xué);2012年
3 任程誠;基于PVDF壓電薄膜的脈博傳感器設(shè)計(jì)[D];大連理工大學(xué);2011年
4 朱金海;PVDF壓電薄膜及其傳感器的制備與性能研究[D];哈爾濱工業(yè)大學(xué);2011年
5 孫霞;人體脈搏信號的采集與分析[D];哈爾濱理工大學(xué);2009年
6 朱玲;PVDF位移傳感器及其應(yīng)用研究[D];哈爾濱工程大學(xué);2009年
本文編號:1411738
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1411738.html