一種六自由度串聯(lián)機(jī)器人的運(yùn)動學(xué)與動力學(xué)仿真分析
本文關(guān)鍵詞:一種六自由度串聯(lián)機(jī)器人的運(yùn)動學(xué)與動力學(xué)仿真分析 出處:《深圳大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 運(yùn)動學(xué) 動力學(xué) Robotics Toolbox 軌跡規(guī)劃 聯(lián)合仿真
【摘要】:工業(yè)4.0的浪潮帶來了工業(yè)機(jī)器人的飛速發(fā)展,現(xiàn)如今,工業(yè)機(jī)器人已經(jīng)被廣泛應(yīng)用于制造業(yè)等行業(yè),它們已成為了先進(jìn)科技力量的標(biāo)志。傳統(tǒng)的人工生產(chǎn)線越來越多地被自動化生產(chǎn)線代替。工業(yè)機(jī)器人的飛速發(fā)展,促進(jìn)了對其運(yùn)動學(xué)、動力學(xué)、軌跡規(guī)劃和運(yùn)動仿真分析等方法的多樣化。本文以自主開發(fā)設(shè)計的一款六自由度串聯(lián)機(jī)器人作為研究對象,使用連桿參數(shù)法創(chuàng)建機(jī)器人坐標(biāo)系統(tǒng),根據(jù)齊次變換矩陣求解機(jī)器人運(yùn)動學(xué)正問題,并采用反變換方法用解歐拉角求運(yùn)動學(xué)逆解,求解結(jié)果驗證了機(jī)器人運(yùn)動學(xué)理論的正確性;研究了機(jī)器人的動力學(xué)分析方法,以牛頓方程和歐拉方程為出發(fā)點,分析了機(jī)器人構(gòu)件的速度和加速度以及牛頓-歐拉動力學(xué)遞推計算公式;應(yīng)用拉格朗日方程描述了機(jī)器人系統(tǒng)的動力學(xué)方程,對動力學(xué)的算法進(jìn)行優(yōu)化并驗證了算法優(yōu)化的可行性,在Matlab進(jìn)行動力學(xué)仿真,通過對機(jī)器人正、逆動力學(xué)仿真,仿真結(jié)果得出關(guān)節(jié)力、力矩與關(guān)節(jié)速度、加速度等變量的相互關(guān)系,以及機(jī)器人在有無重力的情況下的力矩變化,對機(jī)器人的運(yùn)動控制提供巨大幫助;應(yīng)用Matlab強(qiáng)大的建模仿真和GUI編程功能,在Robotics Toolbox工具箱中建立機(jī)器人數(shù)學(xué)模型,根據(jù)機(jī)器人運(yùn)動學(xué)基礎(chǔ)的知識,實現(xiàn)了機(jī)器人正運(yùn)動學(xué)和逆運(yùn)動學(xué)的求解仿真,并根據(jù)機(jī)器人各個關(guān)節(jié)的角位移、速度和加速度等參數(shù)變化曲線,驗證了機(jī)器人運(yùn)動學(xué)的正確性和機(jī)器人建模的可行性;此外還研究了基于關(guān)節(jié)空間規(guī)劃和笛卡爾空間規(guī)劃對機(jī)器人運(yùn)動軌跡規(guī)劃等問題,實現(xiàn)了對機(jī)器人運(yùn)動路徑的實時規(guī)劃。最后,在Solidworks創(chuàng)建六自由度串聯(lián)機(jī)器人三維模型,通過插件建立與Matlab連接,在SimMechanics中生成仿真模型。根據(jù)機(jī)器人運(yùn)動學(xué),對機(jī)器人規(guī)劃一條直線的運(yùn)動軌跡,并把各個關(guān)節(jié)的角位移信號輸入到SimMechanics仿真模型中,得到可視化仿真模型界面,驗證仿真所得到的機(jī)器人運(yùn)動軌跡與期望軌跡一致,達(dá)到了預(yù)期的要求。通過在SimMechanics建立物理仿真模型,使計算、仿真、分析這些過程一次性完成,這種新的仿真方法提高了運(yùn)動仿真效率與準(zhǔn)確性。
[Abstract]:The wave of industry 4.0 has brought the rapid development of industrial robots. Nowadays, industrial robots have been widely used in manufacturing and other industries. They have become the symbol of advanced scientific and technological power. Traditional artificial production lines are more and more replaced by automated production lines. The rapid development of industrial robots has promoted the kinematics and dynamics of industrial robots. This paper takes a six-degree-of-freedom serial robot as the research object and creates the robot coordinate system by using the linkage parameter method. According to the homogeneous transformation matrix, the forward kinematics problem of the robot is solved, and the inverse solution of kinematics is obtained by using the inverse transformation method. The results verify the correctness of the kinematics theory of the robot. The dynamic analysis method of robot is studied. The velocity and acceleration of robot component and the formula of Newton-Euler dynamics recursive calculation are analyzed based on Newton equation and Euler equation. The dynamic equation of robot system is described by Lagrangian equation. The dynamic algorithm is optimized and the feasibility of optimization is verified. The dynamic simulation is carried out in Matlab, and the robot is positive. Inverse dynamics simulation, the simulation results show the relationship between joint force, torque and joint velocity, acceleration and other variables, as well as the dynamics of the robot in the case of gravity or not. Provide great help to robot motion control; By using the powerful modeling and simulation function of Matlab and GUI programming function, the mathematical model of robot is established in the Robotics Toolbox toolbox, which is based on the basic knowledge of robot kinematics. The forward kinematics and inverse kinematics of the robot are simulated, and the curves of angular displacement, velocity and acceleration of each joint are obtained. The correctness of robot kinematics and the feasibility of robot modeling are verified. In addition, the robot trajectory planning based on joint space planning and Cartesian space planning is studied, and the real-time motion path planning is realized. Finally. Three-dimensional model of six-degree-of-freedom series robot is created in Solidworks, and the connection with Matlab is established by plug-in. The simulation model is generated in SimMechanics. According to the kinematics of the robot, the trajectory of a straight line is planned for the robot. The angular displacement signals of each joint are input into the SimMechanics simulation model and the visual simulation model interface is obtained to verify that the robot motion trajectory obtained by the simulation is consistent with the desired trajectory. Through the establishment of physical simulation model in SimMechanics, so that the calculation, simulation, analysis of these processes completed in one time. This new simulation method improves the efficiency and accuracy of motion simulation.
【學(xué)位授予單位】:深圳大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉蕾;;一種串聯(lián)機(jī)器人運(yùn)動學(xué)快速求解方法[J];自動化儀表;2015年08期
2 駱敏舟;方健;趙江海;;工業(yè)機(jī)器人的技術(shù)發(fā)展及其應(yīng)用[J];機(jī)械制造與自動化;2015年01期
3 馮玉倩;高錦宏;王殿君;杜龍波;;基于ADAMS的七自由度機(jī)器人動力學(xué)分析及仿真[J];北京石油化工學(xué)院學(xué)報;2013年02期
4 林江;;水下電動機(jī)械手動力學(xué)分析及仿真[J];四川兵工學(xué)報;2010年06期
5 王偉東;錢東海;;基于Open Inventor的機(jī)器人運(yùn)動學(xué)仿真和軌跡規(guī)劃研究[J];機(jī)械與電子;2010年05期
6 熊小琴;何廣平;;仿袋鼠單腿跳躍機(jī)器人動力學(xué)建模與仿真[J];北方工業(yè)大學(xué)學(xué)報;2009年01期
7 畢勝;;國內(nèi)外工業(yè)機(jī)器人的發(fā)展現(xiàn)狀[J];機(jī)械工程師;2008年07期
8 孫漢旭;賈慶軒;張秋豪;吳凡;譚月勝;葉平;;基于三分支機(jī)器人關(guān)節(jié)空間軌跡規(guī)劃的研究[J];北京郵電大學(xué)學(xué)報;2006年03期
9 楊萍,仲大偉,李鶴岐,張淑珍;水輪機(jī)修復(fù)專用機(jī)器人的動力學(xué)仿真和分析[J];機(jī)械與電子;2004年02期
10 馬光,申桂英;工業(yè)機(jī)器人的現(xiàn)狀及發(fā)展趨勢[J];組合機(jī)床與自動化加工技術(shù);2002年03期
,本文編號:1399767
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1399767.html