Littlewood-Paley算子的變指數(shù)交換子在變指數(shù)空間上的有界性
發(fā)布時(shí)間:2021-11-05 23:32
利用變指數(shù)Lipschitz空間范數(shù)的等價(jià)刻畫(huà),證明了Littlewood-Paley算子的變指數(shù)Lipschitz交換子從變指數(shù)Lebesgue空間到變指數(shù)Lebesgue空間或變指數(shù)Lipschitz空間是有界的。
【文章來(lái)源】:安徽師范大學(xué)學(xué)報(bào)(自然科學(xué)版). 2020,43(06)
【文章頁(yè)數(shù)】:5 頁(yè)
【文章目錄】:
引 言
1 定義和引理
2 主要定理
【參考文獻(xiàn)】:
期刊論文
[1]變指數(shù)Lipschitz交換子在變指數(shù)空間上的有界性[J]. 郭慶棟,周疆,房成龍. 東北師大學(xué)報(bào)(自然科學(xué)版). 2018(04)
[2]Parameterized Littlewood-Paley Operators and Their Commutators on Lebesgue Spaces with Variable Exponent[J]. Lijuan Wang,Shuangping Tao. Analysis in Theory and Applications. 2015(01)
[3]Weighted estimates for the multilinear commutators of the Littlewood-Paley operators[J]. XUE QingYing & DING Yong School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China. Science in China(Series A:Mathematics). 2009(09)
本文編號(hào):3478718
【文章來(lái)源】:安徽師范大學(xué)學(xué)報(bào)(自然科學(xué)版). 2020,43(06)
【文章頁(yè)數(shù)】:5 頁(yè)
【文章目錄】:
引 言
1 定義和引理
2 主要定理
【參考文獻(xiàn)】:
期刊論文
[1]變指數(shù)Lipschitz交換子在變指數(shù)空間上的有界性[J]. 郭慶棟,周疆,房成龍. 東北師大學(xué)報(bào)(自然科學(xué)版). 2018(04)
[2]Parameterized Littlewood-Paley Operators and Their Commutators on Lebesgue Spaces with Variable Exponent[J]. Lijuan Wang,Shuangping Tao. Analysis in Theory and Applications. 2015(01)
[3]Weighted estimates for the multilinear commutators of the Littlewood-Paley operators[J]. XUE QingYing & DING Yong School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China. Science in China(Series A:Mathematics). 2009(09)
本文編號(hào):3478718
本文鏈接:http://sikaile.net/kejilunwen/yysx/3478718.html
最近更新
教材專(zhuān)著