RNA/DNA及癌癥基因測序數(shù)據(jù)的統(tǒng)計方法研究
發(fā)布時間:2021-10-21 15:53
新一代基因測序技術(Next Generation Sequencing,NGS)的發(fā)展,測序成本的降低,大量的測序數(shù)據(jù)在形形色色的生物實驗中產(chǎn)生,也給測序數(shù)據(jù)的統(tǒng)計分析方法——如何根據(jù)這些海量數(shù)據(jù),引入統(tǒng)計檢驗,完成生物實驗層面的各種假設,如何用統(tǒng)計的方法彌補基因測序技術在完整揭露生物本質的不足——提出了新的挑戰(zhàn)。本文將就RNA測序、DNA甲基化(DNA methylation)以及癌癥基因測序數(shù)據(jù)中統(tǒng)計方法的應用進行研究!NA測序首先,NGS一個很重要的應用是快速低消耗地記錄所有的基因轉錄——RNA測序。RNA測序數(shù)據(jù),相對于微陣數(shù)據(jù),對于轉錄水平的刻畫更加精確。在RNA測序實驗中,百萬量級的短測序片段被配對到參考基因組(Reference Genome)上,落入某一些基因片段區(qū)域的讀數(shù)被記錄下來。這些生物學家們感興趣的片段一般被成為microRNA(或簡稱為miRNA)、小干擾RNA (siRNA)、長非編碼RNA (lncRNA)或信使RNA (mRNA)。有研究表明,讀數(shù)數(shù)據(jù)與目標轉錄的多少呈線性的關系。產(chǎn)生這些測序數(shù)據(jù)最基本的一個分析目的在于,更好地識別在不同的生物或者...
【文章來源】:中國科學技術大學安徽省 211工程院校 985工程院校
【文章頁數(shù)】:105 頁
【學位級別】:博士
【文章目錄】:
摘要
ABSTRACT
目錄
表格
插圖
主要符號對照表
Chapter I Introduction
Chapter II Differential Expression Test in RNA-seq Data
2.1 Introduction
2.2 Overview of Existing Normalization Methods
2.2.1 Glob
2.2.2 TMM
2.2.3 Lowess
2.2.4 Quantile
2.2.5 DESeq
2.2.6 edgeR
2.3 Overview of Existing Differential Expression Test Methods
2.3.1 DESeq
2.3.2 edgeR
2.4 Overview of deGPS
2.4.1 GP-MLE2L normalization
2.4.2 GP-Quantile normalization
2.4.3 GP-Theta normalization
2.4.4 GP-MLElL normalization
2.4.5 Differential Expression Test in de GPS
2.5 Simulations and Results
2.5.1 Necessity of data normalization in RNA-seq
2.5.2 Empirical statistical evaluations of different normalization meth-ods
2.5.3 Type Ⅰ errors and statistical powers
2.5.4 Sensitivity and specificity
2.6 Discussion
Chapter III Statistical Methods for Analyzing Base-resolutionMethylation Sequencing Data
3.1 Introduction
3.2 Overview of Generalized Linear Mixed Model
3.3 Different Estimations of GLMM
3.3.1 Pseudo-likelihood Estimation Based on linearisation
3.3.2 Maximum Likelihood Estimation Based on Laplace Approxima-tion
3.3.3 Bayesian Hierarchical GLMM
3.4 Simulation
3.4.1 Simulation for GLIMMIX
3.4.2 Simulation for Bayesian Hierarchical Model
3.5 Discussion
Chapter IV Subclone Detection for Cancer Colls
4.1 Introduction
4.2 Model for Two Subclones
4.2.1 Model Description
4.2.2 Parameter Estimate
4.2.3 The Statistical Significant Test of Two Subclones
4.3 Model for Multiple Sub-clones
4.4 Further Research
參考文獻
Appendix A Appendix
致謝
在讀期間發(fā)表的學術論文與取得的研究成果
本文編號:3449291
【文章來源】:中國科學技術大學安徽省 211工程院校 985工程院校
【文章頁數(shù)】:105 頁
【學位級別】:博士
【文章目錄】:
摘要
ABSTRACT
目錄
表格
插圖
主要符號對照表
Chapter I Introduction
Chapter II Differential Expression Test in RNA-seq Data
2.1 Introduction
2.2 Overview of Existing Normalization Methods
2.2.1 Glob
2.2.2 TMM
2.2.3 Lowess
2.2.4 Quantile
2.2.5 DESeq
2.2.6 edgeR
2.3 Overview of Existing Differential Expression Test Methods
2.3.1 DESeq
2.3.2 edgeR
2.4 Overview of deGPS
2.4.1 GP-MLE2L normalization
2.4.2 GP-Quantile normalization
2.4.3 GP-Theta normalization
2.4.4 GP-MLElL normalization
2.4.5 Differential Expression Test in de GPS
2.5 Simulations and Results
2.5.1 Necessity of data normalization in RNA-seq
2.5.2 Empirical statistical evaluations of different normalization meth-ods
2.5.3 Type Ⅰ errors and statistical powers
2.5.4 Sensitivity and specificity
2.6 Discussion
Chapter III Statistical Methods for Analyzing Base-resolutionMethylation Sequencing Data
3.1 Introduction
3.2 Overview of Generalized Linear Mixed Model
3.3 Different Estimations of GLMM
3.3.1 Pseudo-likelihood Estimation Based on linearisation
3.3.2 Maximum Likelihood Estimation Based on Laplace Approxima-tion
3.3.3 Bayesian Hierarchical GLMM
3.4 Simulation
3.4.1 Simulation for GLIMMIX
3.4.2 Simulation for Bayesian Hierarchical Model
3.5 Discussion
Chapter IV Subclone Detection for Cancer Colls
4.1 Introduction
4.2 Model for Two Subclones
4.2.1 Model Description
4.2.2 Parameter Estimate
4.2.3 The Statistical Significant Test of Two Subclones
4.3 Model for Multiple Sub-clones
4.4 Further Research
參考文獻
Appendix A Appendix
致謝
在讀期間發(fā)表的學術論文與取得的研究成果
本文編號:3449291
本文鏈接:http://sikaile.net/kejilunwen/yysx/3449291.html
最近更新
教材專著