加權(quán)有向隨機(jī)圖模型中的漸近理論研究
文內(nèi)圖片:
圖片說(shuō)明圖1:邋Karate數(shù)據(jù)集網(wǎng)絡(luò)圖逡逑
[Abstract]:In recent years, the research on the statistical properties of directed graph models has become a hot topic. In particular, as the number of vertices in the digraph tends to infinity, the study of the asymptotic behavior of the maximum likelihood estimation based on the vertex degree sequence parameters is a new challenge. Yanetal. (2016a) The asymptotic properties of the maximum likelihood estimation of the parameters in the case of infinite discrete and continuous cases are studied. However, for the weight of the other side, the finite discrete case is not involved, and we further study the situation to obtain similar results. In this paper, we aim to set up the consistent consistency and asymptotic normality of the maximum likelihood estimation of the parameters when the number of parameters tends to be infinite. With the fact that the number of vertices in the random graph tends to be infinite and the double-degree sequence is the full sufficient statistic of the exponential family distribution with the finite discrete weighting, we study the consistency and the asymptotic normality of the maximum likelihood estimation of the parameters. The theoretical results are demonstrated by numerical simulation and two practical numerical examples. The main results of this paper are given in the form of the following two theorems: Theorem 1 (Consistency) assumes that it is a constant of 0-1/24, A-P-*, Where P * * represents the probability distribution of the directed graph Gn under the parameter F *[see (1.1)]. Then when n tends to infinity, the probability is 1, the maximum likelihood estimate is present and satisfies the | | 1-1 * | | xt = Op ((logn)1/ 2e6 | | xt * | | 1/ n1/2) = Op (1). Further, if the maximum likelihood estimation is present, the presence of the maximum likelihood estimation is unique. Theorem 2 (Asymptotic Normality) assumes A-P-*. If | | 1 | | showcases (logn,1/36) is a constant, then any fixed kk = 1, with n = 0, the first k elements of the vector 1-1 * are asymptotically subordinate to the multivariate normal distribution, where the mean value of the parameter is 0, The covariance matrix consists of sub-matrices of the upper left-hand corner k-k of the S *, where the matrix S * is obtained by replacing the matrix S in the matrix S with the true value A *, and the definition of S is shown in (4.6). in-file picture: picture description fig.1: fig.1: kakrate data set network diagram
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O212
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 潘保國(guó);;一類(lèi)非對(duì)稱(chēng)的GARCH模型的參數(shù)估計(jì)[J];吉林師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年04期
2 張如夢(mèng);;小噪聲擾動(dòng)的二維擴(kuò)散的極大似然估計(jì)[J];貴州師范學(xué)院學(xué)報(bào);2016年03期
3 羅泰曄;馬翠嫦;;基于指數(shù)隨機(jī)圖模型的協(xié)同創(chuàng)新網(wǎng)絡(luò)形成機(jī)理研究[J];情報(bào)理論與實(shí)踐;年期
4 田方;;一類(lèi)稀疏隨機(jī)圖的距離匹配數(shù)(英文)[J];數(shù)學(xué)進(jìn)展;2018年02期
5 溫亮;王莉雯;;基于C#的隨機(jī)圖像驗(yàn)證碼的繪制[J];城市地理;2016年24期
6 周偉萍;張德然;楊興瓊;;具有部分缺失數(shù)據(jù)時(shí)兩個(gè)幾何總體的估計(jì)[J];長(zhǎng)春大學(xué)學(xué)報(bào);2008年02期
7 韓七星;孫偉志;;隨機(jī)食物有限種群模型參數(shù)估計(jì)的相合性及其漸近分布[J];吉林大學(xué)學(xué)報(bào)(理學(xué)版);2012年03期
8 田甜;楊艷麗;郭浩;陳俊杰;;基于層次隨機(jī)圖模型的腦網(wǎng)絡(luò)鏈路預(yù)測(cè)[J];計(jì)算機(jī)應(yīng)用研究;2016年04期
9 王越乙;徐樅巍;;指數(shù)隨機(jī)圖(p*)模型不同描述的對(duì)比研究[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年04期
10 盧海威;趙勝利;;有先驗(yàn)信息的多參數(shù)分布族的參數(shù)估計(jì)[J];曲阜師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期
相關(guān)會(huì)議論文 前10條
1 郭雷;;連續(xù)系統(tǒng)的近似極大似然估計(jì):存在性與收斂性[A];1991年控制理論及其應(yīng)用年會(huì)論文集(下)[C];1991年
2 宋立新;魯大偉;付增梁;;TARCH(q)模型參數(shù)的極大似然估計(jì)[A];中國(guó)現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第十三屆學(xué)術(shù)年會(huì)論文集[C];2007年
3 韋進(jìn);劉子維;郝洪濤;申重陽(yáng);李輝;;超導(dǎo)重力觀(guān)測(cè)噪聲水平的極大似然估計(jì)[A];中國(guó)地球物理2010——中國(guó)地球物理學(xué)會(huì)第二十六屆年會(huì)、中國(guó)地震學(xué)會(huì)第十三次學(xué)術(shù)大會(huì)論文集[C];2010年
4 李永紅;;可加模型回歸函數(shù)估計(jì)的強(qiáng)相合性[A];數(shù)學(xué)·物理·力學(xué)·高新技術(shù)研究進(jìn)展——1998(7)卷——中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會(huì)第7屆學(xué)術(shù)研討會(huì)論文集[C];1998年
5 孫燕;柴根象;;縱向數(shù)據(jù)混合效應(yīng)模型參數(shù)估計(jì)的強(qiáng)相合性[A];2003中國(guó)現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第十一屆學(xué)術(shù)年會(huì)論文集(下)[C];2003年
6 萬(wàn)超崗;趙杰煜;張媛媛;;基于隨機(jī)圖的情感產(chǎn)生模型[A];第十四屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2008年
7 李剛;童,
本文編號(hào):2509867
本文鏈接:http://sikaile.net/kejilunwen/yysx/2509867.html