加權(quán)Koch網(wǎng)絡(luò)的分形與重分形性質(zhì)及其Laplace特征值
發(fā)布時(shí)間:2019-06-10 12:47
【摘要】:本文主要研究Dai等人提出的加權(quán)Koch網(wǎng)絡(luò)和Zhang等人提出的Koch網(wǎng)絡(luò)的分形維數(shù)、重分形性質(zhì)以及Laplace特征值。加權(quán)Koch網(wǎng)絡(luò)是在Koch網(wǎng)絡(luò)的基礎(chǔ)上,引入一個(gè)權(quán)系數(shù)ω(0ω≤1)。當(dāng)ω=1時(shí),加權(quán)Koch網(wǎng)絡(luò)就變?yōu)镵och網(wǎng)絡(luò)。首先,運(yùn)用數(shù)值計(jì)算,我們得到加權(quán)Koch網(wǎng)絡(luò)的分形維數(shù)與權(quán)系數(shù)ω(0ω1)的依賴關(guān)系。我們發(fā)現(xiàn),加權(quán)Koch網(wǎng)絡(luò)的分形維數(shù)的數(shù)值解與Dai等人給出的理論解非常吻合,也即本文運(yùn)用的算法適用于加權(quán)Koch網(wǎng)絡(luò)。然后,我們得到加權(quán)Koch網(wǎng)絡(luò)的平均質(zhì)量分布τ(q)曲線和廣義分形維數(shù)D(q)曲線,發(fā)現(xiàn)此網(wǎng)絡(luò)具有重分形性質(zhì)。且此網(wǎng)絡(luò)的信息維數(shù)D(1)與關(guān)聯(lián)維數(shù)D(2)均與ω(0ω1)成二次依賴關(guān)系。其次,Koch網(wǎng)絡(luò)是加權(quán)Koch網(wǎng)絡(luò)的一種特殊情況,本文的算法也適用于Koch網(wǎng)絡(luò)。運(yùn)用數(shù)值計(jì)算,我們得到Koch網(wǎng)絡(luò)的分形維數(shù)
[Abstract]:In this paper, we mainly study the fractal dimension, multifractal properties and Laplace eigenvalues of weighted Koch networks proposed by Dai et al. And Koch networks proposed by Zhang et al. The weighted Koch network is based on the Koch network, and a weight coefficient 蠅 (0 蠅 鈮,
本文編號(hào):2496462
[Abstract]:In this paper, we mainly study the fractal dimension, multifractal properties and Laplace eigenvalues of weighted Koch networks proposed by Dai et al. And Koch networks proposed by Zhang et al. The weighted Koch network is based on the Koch network, and a weight coefficient 蠅 (0 蠅 鈮,
本文編號(hào):2496462
本文鏈接:http://sikaile.net/kejilunwen/yysx/2496462.html
最近更新
教材專著