廣義分?jǐn)?shù)階混沌系統(tǒng)的動(dòng)力學(xué)行為(英文)
[Abstract]:In view of a new generalized fractional calculus proposed recently,this paper is devoted to applying the generalized fractional derivatives to study new generalized fractional chaotic systems. The chaotic properties depending on the new generalized fractional derivative are discussed and shown graphically. The generalized fractional derivative is described in the Caputo sense,and the finite difference approach for solving the generalized fractional chaot ic system is presented. Since the generalized fractional derivative includes many existing fractional derivatives as special cases, we hope more attention will be brought into this field in the near future.
【作者單位】: Department
【基金】:supported by the National Natural Science Foundation of China(11501581) the Project by Central South University(502042032) the China Postdoctoral Science Foundation(2015M570683)
【分類號(hào)】:O175
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;Solution of Semi-Boundless Mixed Problem for Time-fractional Telegraph Equation[J];Acta Mathematicae Applicatae Sinica;2007年04期
2 ;Stability test of fractional-delay systems via integration[J];Science China(Physics,Mechanics & Astronomy);2011年10期
3 吳朝俊;張彥斌;楊寧寧;;The synchronization of a fractional order hyperchaotic system based on passive control[J];Chinese Physics B;2011年06期
4 ;FRACTIONAL INTEGRALS OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES AND THE APPROXIMATION BY TRIGONOMETRICAL POLYNOMIALS[J];北京大學(xué)學(xué)報(bào)(自然科學(xué));1957年03期
5 劉桂真,張?zhí)m菊;PROPERTIES OF FRACTIONAL k-FACTORS OF GRAPHS[J];Acta Mathematica Scientia;2005年02期
6 袁琳;;Wavelet-fractional Fourier transforms[J];Chinese Physics B;2008年01期
7 ;The multiple-parameter fractional Fourier transform[J];Science in China(Series F:Information Sciences);2008年08期
8 ;A note on the definition of fractional derivatives applied in rheology[J];Acta Mechanica Sinica;2011年06期
9 葛紅霞;劉永慶;程榮軍;;Element-free Galerkin (EFG) method for analysis of the time-fractional partial differential equations[J];Chinese Physics B;2012年01期
10 張世華;陳本永;傅景禮;;Hamilton formalism and Noether symmetry for mechanico electrical systems with fractional derivatives[J];Chinese Physics B;2012年10期
相關(guān)會(huì)議論文 前10條
1 ;Analytical solution of non-constant coefficients fractional differential equation by Adomian decomposition method[A];第24屆中國控制與決策會(huì)議論文集[C];2012年
2 ;The time-space fractional diffusion equation with an absorption term[A];第24屆中國控制與決策會(huì)議論文集[C];2012年
3 LI Rui-hong;;Dynamical analysis for a new fractional order system and its robust control[A];第九屆全國動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議會(huì)議手冊[C];2012年
4 J. Viola;L. 嚶ngel;;Design of a fractional PI controller to control a flow and level system[A];第25屆中國控制與決策會(huì)議論文集[C];2013年
5 Lilian Huang;Xiaoliang Zhou;;Identification of fractional-order system based on modified differential evolution[A];第25屆中國控制與決策會(huì)議論文集[C];2013年
6 ;Robust Fractional Order Differentiator[A];第24屆中國控制與決策會(huì)議論文集[C];2012年
7 ;The Synchronization of Fractional-order Chaotic Systems via Sliding Mode Control[A];第十三屆全國非線性振動(dòng)暨第十屆全國非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集[C];2011年
8 Changpin Li;Yutian Ma;;Fractional Dynamical System and Its Linearization Theorem[A];第九屆全國動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議會(huì)議手冊[C];2012年
9 ;Multiple positive solution to boundary value problems for a coupled systems of nonlinear semipositone fractional differential equations[A];第24屆中國控制與決策會(huì)議論文集[C];2012年
10 ;The L_p Stability Analysis of the Basic Functions for Fractional Order Systems[A];第24屆中國控制與決策會(huì)議論文集[C];2012年
,本文編號(hào):2482773
本文鏈接:http://sikaile.net/kejilunwen/yysx/2482773.html