雙曲守恒律方程的高階半拉格朗日方法
[Abstract]:The semi-Lagrangian (Semi-Lagrangian) method is widely used to calculate the Vlasov equation and simulate the weather forecasting operation. This method effectively combines the Lagrangian method (Lagrangian) with the Euler method (Eulerian). At the same time, it has the advantages of these two methods: on the one hand, after improvement, the Semi-Lagrangian method can have high-order accuracy; On the other hand, Semi-Lagrangian method does not need to be limited by CFL condition, and can save a lot of calculation time in numerical simulation. In addition, the weighted essential non-oscillatory scheme (WENO), as a method with high order accuracy, has the property of non-oscillatory at the same time. It is precisely because the high-order Semi-Lagrangian method can not only achieve high-order accuracy, but also effectively deal with oscillations. In this paper, several higher-order Semi-Lagrangian methods are proposed for conservation law equations. The higher order accuracy and non-oscillatory properties of the method are verified by numerical simulation experiments, which further enriches the theoretical knowledge of solving conservation law equations by Semi-Lagrangian method. Firstly, a higher order Semi-Lagrangian finite volume (FV) method for one-dimensional hyperbolic conservation law equations is proposed. The fourth order RK method to the left is used to calculate the initial value problem of the feature curve, and the equivalent transformation of the function value of different time layers is carried out by using the characteristic curve. The transformed function value can be reconstructed by WENO method to increase the spatial accuracy. Because the position relationship between the initial point and the end point is changed along the trajectory of the characteristic curve, the WENO reconstruction suitable for different cases is given in this paper. Furthermore, the high precision and effective capture of discontinuity points are verified by precision detection and analysis of non-oscillatory properties. Secondly, a high-order Semi-Lagrangian finite difference (FD) method for two-dimensional hyperbolic conservation law equations is proposed. A new WENO method is constructed by using Legendre multinomial. This method has the same template and accuracy as the ordinary WENO scheme, but it does not need integral calculation to realize the whole reconstruction process, which saves the calculation time. It is more suitable to reconstruct the numerical flux which is not on the grid point in the paper. In addition, a series of numerical experiments of two-dimensional conservation law equations are given in this paper, which verify the high-order accuracy of the method and the ability to deal with intermittent points. Finally, a 5-order mapping compact Semi-Lagrangian FD method is proposed. According to the symbol of characteristic velocity, different WENO reconstruction methods are constructed and extended. Because the common nonlinear weight WENO method will reduce the accuracy near the extreme point, this paper introduces the weighting of mapping to deal with this kind of problem. In the numerical simulation, the accuracy analysis and the analysis of non-oscillatory properties are used to verify that the 5-order mapping compact Semi-Lagrangian FD method can achieve the fifth-order accuracy and maintain the ability to capture the breakpoints at the same time. In summary, based on the high-order accuracy and high resolution of the higher-order Semi-Lagrangian method in solving hyperbolic conservation law equations, the one-dimensional scalar equation, the Euler equation and the higher-order Semi-Lagrangian FV method with source term shallow water equation are proposed in this paper. The higher order Semi-Lagrangian FD method and the fifth order mapping compact Semi-Lagrangian FD method for two dimensional hyperbolic conservation law equations. The numerical simulation results show that these methods are accurate and non-oscillatory, and show the superiority of higher order Semi-Lagrangian method in calculating hyperbolic conservation law equations. at the same time, it is shown that the method proposed in this paper is suitable for solving hyperbolic conservation law equations.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:O241.82
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳淵文;;一類含非局部項(xiàng)的守恒律方程的穩(wěn)定性[J];復(fù)旦學(xué)報(bào)(自然科學(xué)版);2010年04期
2 葛翔宇;蔡宏材;;關(guān)于常態(tài)情形守恒律方程組的混合問題[J];武漢工學(xué)院學(xué)報(bào);1991年04期
3 李念英;;帶松弛項(xiàng)的單個(gè)守恒律方程解的大時(shí)間狀態(tài)估計(jì)[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年05期
4 林祥亮;;退化的粘性守恒律方程解的收斂性估計(jì)[J];復(fù)旦學(xué)報(bào)(自然科學(xué)版);2011年06期
5 王術(shù),王衛(wèi);粘性守恒律方程的粘性激波[J];河南大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年02期
6 李念英;王維克;;帶松弛項(xiàng)的單個(gè)守恒律方程解的時(shí)態(tài)漸近性質(zhì)[J];應(yīng)用數(shù)學(xué);2006年02期
7 李祥貴,李明新;求解雙曲守恒律方程的高次有限元方法[J];石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年04期
8 李念英;李同榮;;帶松弛項(xiàng)的守恒律方程解的逐點(diǎn)估計(jì)[J];濱州學(xué)院學(xué)報(bào);2009年06期
9 徐振禮,劉儒勛,邱建賢;雙曲守恒律方程的加權(quán)本質(zhì)無振蕩格式新進(jìn)展[J];力學(xué)進(jìn)展;2004年01期
10 賈博;唐玲艷;宋松和;;雙曲型守恒律方程的兩種高精度方法的比較研究[J];湘潭大學(xué)自然科學(xué)學(xué)報(bào);2010年04期
相關(guān)會(huì)議論文 前3條
1 柏勁松;陳森華;李平;;多介質(zhì)流體歐拉守恒與非守恒律方程組高精度數(shù)值計(jì)算[A];中國工程物理研究院科技年報(bào)(2000)[C];2000年
2 徐云;蔚喜軍;;變分多尺度方法求解雙曲守恒律方程[A];第五屆全國青年計(jì)算物理學(xué)術(shù)交流會(huì)論文摘要[C];2008年
3 劉凱欣;王景燾;張德良;;時(shí)—空守恒元解元(CE/SE)方法簡述[A];計(jì)算爆炸力學(xué)進(jìn)展[C];2006年
相關(guān)博士學(xué)位論文 前6條
1 闞輝;二維Glimm型格式與高維守恒律方程解的爆破及奇性結(jié)構(gòu)的研究[D];中國科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2016年
2 吳浪;雙曲守恒律方程的高階半拉格朗日方法[D];哈爾濱工業(yè)大學(xué);2015年
3 曹高偉;雙曲守恒律方程的弱解公式及相關(guān)問題的研究[D];中國科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2014年
4 鄭華盛;流體力學(xué)高精度數(shù)值方法研究[D];南京航空航天大學(xué);2005年
5 黃玲;加權(quán)本質(zhì)非振蕩格式和快速掃描法和在行人流模型中的應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2008年
6 耿金波;流體力學(xué)中若干模型方程解的相近程度的估計(jì)[D];復(fù)旦大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 李偉;一類二維守恒律方程的非自相似全局解的奇性結(jié)構(gòu)[D];中國科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2016年
2 丁美玲;非齊次雙曲型守恒律方程組整體解的研究[D];南京航空航天大學(xué);2015年
3 陳淵文;一類含非局部項(xiàng)的守恒律方程的穩(wěn)定性[D];復(fù)旦大學(xué);2009年
4 林祥亮;退化粘性守恒律方程解的收斂性估計(jì)[D];復(fù)旦大學(xué);2010年
5 王熠;高維雙曲守恒律方程全局解的研究[D];汕頭大學(xué);2006年
6 匡杰;非齊次周期性雙曲守恒律解的大時(shí)間行為[D];南京航空航天大學(xué);2012年
7 黃春香;應(yīng)用包絡(luò)研究二維守恒律方程解的相互作用[D];汕頭大學(xué);2009年
8 牛海萍;高維單守恒律方程的非自相似基本波及其相互作用[D];汕頭大學(xué);2004年
9 賈博;雙曲守恒律方程的兩種高精度方法的比較研究[D];國防科學(xué)技術(shù)大學(xué);2010年
10 李坤;高維守恒律方程基本波的相互作用與演化[D];汕頭大學(xué);2008年
,本文編號(hào):2482397
本文鏈接:http://sikaile.net/kejilunwen/yysx/2482397.html