徑向基神經(jīng)網(wǎng)絡(luò)基函數(shù)中心確定方法改進(jìn)研究
[Abstract]:Radial basis function (Radial Basis Function,RBF) neural network is a kind of locally approximate three-layer feedforward neural network. Compared with other feedforward neural networks, it has the advantages of simple structure, fast convergence and not falling into the local minimum point. It has received great attention and has been widely used in many fields. In the process of constructing RBF neural network, the learning algorithm of determining the basis function center by using k-means clustering method needs to give the initial clustering center in advance. When the given initial clustering center is different, the obtained basis function center may be different. The result of network training is unstable, and the number of neurons in the hidden layer of the network needs to be given in advance, but the network structure can not be determined in advance. In order to solve this problem, a method of determining the basis function center by system clustering is proposed, which effectively solves the problem that RBF neural network is sensitive to the initial clustering center. This paper first introduces the basic principle of RBF neural network, analyzes the structure and performance of different RBF neural network, and points out the characteristics of each kind of network and the problems that need to be paid attention to. In this paper, several commonly used learning algorithms of RBF neural network are studied, and the flow chart and advantages and disadvantages of several methods for determining the center of basis function are analyzed. This paper analyzes the basic principle and operation steps of clustering, introduces several methods for calculating sample spacing and class spacing in the process of determining the center of basis function, and gives the condition of cluster stopping according to the variation of cluster spacing in clustering process. The basic ideas and methods of operation are described. The method of determining the basis function center by system clustering is applied to the construction of neural network, and the flow and detailed steps of improving network training are introduced. The program design of the improved method is carried out on the basis of the theory, and the validity of the improved method is verified by an example. The main research results are as follows: (1) A new method to determine the basis function center by system clustering is proposed in this paper. The detailed calculation method and steps of this method are given. Comparing this method with other methods, the advantages of this method are given. Based on the analysis of the principle and process of systematic clustering, the conclusion is drawn that the new method does not need to give the initial point of the center of the basis function in advance compared with the traditional method. The sensitivity of the network to the selection of the initial value of the center of the basis function is effectively avoided. (2) A new method for determining the number of basis functions is proposed. On the basis of studying various sample spacing and class spacing calculation methods of system clustering, it is proposed that the relationship between the variation of class spacing is used as the condition to judge whether the iteration is stopped or not, and the number of hidden layer neurons is no longer needed to be given in advance. The neural network can be constructed by self-organization. (3) the algorithm is realized by programming, and the realization of the algorithm is proved. Using MATLAB platform, a neural network is designed and implemented to determine the basis function center by system clustering. (4) three examples are used to verify the effectiveness of the improved method in solving practical problems. The RBF neural network based on the method of determining the basis function center by system clustering is applied to function approximation problem, classification problem and time series prediction problem, and good results are obtained. The experimental results of the traditional neural network based on k-means clustering method and the neural network based on systematic clustering method are compared, and the feasibility and effectiveness of the improved method are proved.
【學(xué)位授予單位】:東北農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP183;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何志連;王福林;董慧英;王會(huì)鵬;;BP神經(jīng)網(wǎng)絡(luò)最佳停止法對(duì)農(nóng)機(jī)總動(dòng)力的預(yù)測(cè)[J];農(nóng)機(jī)化研究;2017年02期
2 馬海志;王福林;王慧鵬;何志連;;基于改進(jìn)BP神經(jīng)網(wǎng)絡(luò)的黑龍江農(nóng)機(jī)總動(dòng)力預(yù)測(cè)[J];農(nóng)機(jī)化研究;2016年02期
3 賈偉寬;趙德安;劉曉洋;唐書萍;阮承治;姬偉;;機(jī)器人采摘蘋果果實(shí)的K-means和GA-RBF-LMS神經(jīng)網(wǎng)絡(luò)識(shí)別[J];農(nóng)業(yè)工程學(xué)報(bào);2015年18期
4 汪宜東;;基于單點(diǎn)密度的Kmeans算法優(yōu)化[J];福建電腦;2015年01期
5 馮新營(yíng);計(jì)華;張化祥;;基于聚類優(yōu)化的RBF神經(jīng)網(wǎng)絡(luò)多標(biāo)記學(xué)習(xí)算法[J];山東大學(xué)學(xué)報(bào)(理學(xué)版);2012年05期
6 李曉俊;呂曉艷;劉軍;;基于徑向基神經(jīng)網(wǎng)絡(luò)的鐵路短期客流預(yù)測(cè)[J];鐵道運(yùn)輸與經(jīng)濟(jì);2011年06期
7 孫丹;萬(wàn)里明;孫延風(fēng);梁艷春;;一種改進(jìn)的RBF神經(jīng)網(wǎng)絡(luò)混合學(xué)習(xí)算法[J];吉林大學(xué)學(xué)報(bào)(理學(xué)版);2010年05期
8 余華;李海洋;李啟元;;基于徑向基神經(jīng)網(wǎng)絡(luò)的數(shù)字“0”~“9”語(yǔ)音識(shí)別[J];江西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年06期
9 馬曾;趙時(shí);汪擁軍;;BP神經(jīng)網(wǎng)絡(luò)在網(wǎng)絡(luò)通信中的應(yīng)用[J];電腦知識(shí)與技術(shù);2009年09期
10 王華麗;周尚波;;基于熵聚類的RBF神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法[J];計(jì)算機(jī)仿真;2008年11期
相關(guān)博士學(xué)位論文 前1條
1 王吉權(quán);BP神經(jīng)網(wǎng)絡(luò)的理論及其在農(nóng)業(yè)機(jī)械化中的應(yīng)用研究[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 何志連;BP神經(jīng)網(wǎng)絡(luò)整體變步長(zhǎng)與個(gè)體變步長(zhǎng)算法的比較研究[D];東北農(nóng)業(yè)大學(xué);2016年
2 馬云龍;基于主成分分析的RBF神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)算法及其應(yīng)用[D];吉林大學(xué);2015年
3 王序;基于改進(jìn)的RBF神經(jīng)網(wǎng)絡(luò)的航空公司績(jī)效評(píng)價(jià)模型研究[D];哈爾濱工業(yè)大學(xué);2015年
4 范傳鑫;基于改進(jìn)的RBF神經(jīng)網(wǎng)絡(luò)的城市震害損失評(píng)估模型[D];哈爾濱工業(yè)大學(xué);2014年
5 郭鵬飛;基于改進(jìn)RBF神經(jīng)網(wǎng)絡(luò)算法的水質(zhì)預(yù)測(cè)模型研究[D];華東交通大學(xué);2013年
6 王瑋;支持向量機(jī)與RBF神經(jīng)網(wǎng)絡(luò)在數(shù)據(jù)預(yù)測(cè)模型的應(yīng)用[D];西安石油大學(xué);2012年
7 吳瑞柳;多層徑向基函數(shù)網(wǎng)絡(luò)的聚類學(xué)習(xí)方法及應(yīng)用[D];安徽工業(yè)大學(xué);2012年
8 龐振;基于徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的圖像識(shí)別研究[D];長(zhǎng)沙理工大學(xué);2011年
9 米江;基于神經(jīng)網(wǎng)絡(luò)和小波分析的風(fēng)機(jī)故障診斷專家系統(tǒng)[D];南京航空航天大學(xué);2010年
10 于曉;人工腦的一種具有期望容錯(cuò)域的聯(lián)想記憶神經(jīng)網(wǎng)絡(luò)模型研究[D];青島大學(xué);2010年
,本文編號(hào):2463263
本文鏈接:http://sikaile.net/kejilunwen/yysx/2463263.html