天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

一類復(fù)對稱線性系統(tǒng)的參數(shù)化PMHSS迭代方法

發(fā)布時間:2019-04-11 10:08
【摘要】:基于預(yù)處理修正的Hermitian和skew-Heimitian分裂(PMHSS)迭代方法和交替方向的PMHSS(ADPMHSS)迭代方法的思想,本文提出了一種新的迭代方法來求解一類復(fù)對稱線性系統(tǒng),即參數(shù)化PMHSS(P2MHSS)迭代方法.在本文中,我們不僅從預(yù)處理矩陣的角度給出了 P2MHSS迭代方法的參數(shù)選取方法和計算公式,還分析了該方法的收斂性質(zhì),并證明了其在一定條件下對任意的初始向量都會收斂到該線性系統(tǒng)的精確解.最后,我們用數(shù)值算例驗證了 P2MHSS迭代方法的可行性和有效性.
[Abstract]:In this paper, a new iterative method is proposed to solve a class of complex symmetric linear systems, i.e., the parametric PMHSS (P2MHSS) iterative method, based on the pre-processing modified Hermitian and the skew-Heimitian splitting (PMHSS) iterative method and the alternating direction PMHSS (ADPMHSS) iterative method. In this paper, we not only give the parameter selection method and calculation formula of the P2MHSS iterative method from the angle of the pre-processing matrix, and also analyze the convergence property of the method, and prove that any initial vector will converge to the exact solution of the linear system under certain conditions. Finally, we use a numerical example to verify the feasibility and effectiveness of the P2MHSS iterative method.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O241.6

【參考文獻(xiàn)】

相關(guān)期刊論文 前2條

1 Michael K.Ng;Nam Kiu Tsing;;Spectral Analysis for HSS Preconditioners[J];Numerical Mathematics:Theory,Methods and Applications;2008年01期

2 馬菊俠;關(guān)于矩陣跡的運算[J];陜西師范大學(xué)學(xué)報(自然科學(xué)版);2003年S1期

,

本文編號:2456317

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2456317.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶322f3***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com