天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 數學論文 >

Dendrite上的一些動力學性質

發(fā)布時間:2019-04-02 05:13
【摘要】:近年來,許多學者研究了dendrite上的動力系統(tǒng)性質,例如等度連續(xù)性、分離指數、軌道的收斂性、dendrite映射的極小集和中心深度等,但是dendrite上的等度連續(xù)性和中心深度尚有研究的空間.因此本文主要針對這兩個方面對dendrite展開研究.一個連續(xù)統(tǒng)是一個非空緊致連通的度量空間,而一個局部連通的不包含閉合曲線的連續(xù)統(tǒng)叫做dendrite.本文主要有以下結果.在第三章中,設D是一個有有限個分支點的dendrite以及f是D到它自身的連續(xù)映射.用R(f)和P(f)來分別表示回歸點集和非游蕩點集.設Ωo(f)=D,Ωn(f)=Ω(f|Ω-1(f))(對任意的n∈N).滿足Ωm(f)= Ωm+1(f)的最小的m ∈N ∪{∞}稱為f的深度.在本文中,證明了Ω3(f)=R(f)以及f的深度不超過3.而且找到了一個dendrite T,使其有兩個分支點,以及找到f是T到它自身的連續(xù)映射,使得Ω3(f)=R(f)≠Ω2(f).在第四章中,設T是一個有有限個分支點的dendrite以及f是T到它自身的連續(xù)映射.用ω(χ,f)表示在f作用下的ω-極限集.非游蕩點集為Ω(χ,f)=.{存在點列{xk}(?)T以及遞增序列{nk}(?) N,使得且對dendrite上的等度連續(xù)性進行研究,可得到如下等價結論:(1)f是等度連續(xù)的;(2)對任意的x∈T,ω(x,f)=Ω(x,f);(3)對任意的x∈T,Ω(x,f)都是一條周期軌;(4)∩∞n=1fn(T)=P(f),并且對任意的x∈T,都有Card(ω(x,f))∞以及函數h:x →ω(x,f)(x∈f)連續(xù).另外,還構造并證明了其他兩個特殊的dendrite:(1)存在一個dendrite D和f是D到D的連續(xù)映射,使得P(f)=Ω(f)≠D=CR(f),并且對任意的n ∈N, fn無湍流.(2)存在一個dendrite D和f是D到D的連續(xù)映射,滿足對某個的x∈D,存在y∈D,使得當x∈Sα(y,f)時,x (?) Sα(x,f).
[Abstract]:In recent years, many scholars have studied the properties of dynamical systems on dendrite, such as equal continuity, separation index, convergence of orbits, minimal sets of dendrite maps and central depth, etc. However, there is still room for research on equal continuity and central depth on dendrite. Therefore, this paper mainly focuses on these two aspects of the dendrite research. A continuum is a nonempty compact connected metric space, and a locally connected continuum without closed curves is called dendrite. The main results of this paper are as follows. In chapter 3, let D be a dendrite with finite fulcrum and f be a continuous mapping from D to itself. R (f) and P (f) are used to represent the regression point set and the non-wandering point set respectively. Let 惟 o (f) = D, 惟 n (f) = 惟 (f | 惟-1 (f) (). The minimum m 鈭,

本文編號:2452280

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2452280.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶8b785***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com