拋物型積分微分方程的對稱間斷有限體積元方法
[Abstract]:In general, the stiffness matrix obtained by using finite element method to simulate symmetric parabolic Integro-differential problems is symmetric, so it is a symmetric method. However, when the discontinuous finite volume element method is used to simulate this problem, The stiffness matrix obtained by us is asymmetrical, so it is an asymmetric method, which results in a single method for solving the finite element solution and a large amount of space for the program to run. In view of this, the symmetric discontinuous finite volume element method is studied in this paper. In this paper, we first study the initial boundary value problems of parabolic Integro-differential equations (?) A new numerical simulation method, symmetric discontinuous finite volume element method, is proposed. This method is proposed on the basis of discontinuous finite volume element method, so this method has the advantages of discontinuous finite volume element method, for example, when constructing finite element space, the function is not required to be continuous when crossing the boundary of internal element. The space structure is simple, and it has the advantages of high parallelism, high precision and so on. At the same time, it also has some advantages of symmetric scheme: the calculation method is varied and the error estimation is simple and clear. In this paper, the semi-discrete and fully discrete symmetric discontinuous finite volume element schemes for the problem are given respectively. By defining the Sobolev projection of the problem, it is obtained that the solution of the symmetric discontinuous finite volume element has L2 modes and discrete | 1s. The optimal order error estimate of h; Finally, numerical experiments support the results of theoretical analysis.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O241.82
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 孫淑珍;石翔宇;;拋物型積分微分方程雙線性元方法的新估計(jì)[J];鄭州大學(xué)學(xué)報(bào)(理學(xué)版);2016年04期
2 吳志勤;石東洋;;拋物型積分微分方程的一個(gè)新低階混合元格式[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年06期
3 王芬玲;石東洋;;拋物積分微分方程的非協(xié)調(diào)元的收斂性分析[J];河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期
4 石東洋;王海紅;;拋物型積分微分方程的非協(xié)調(diào)H~1-Galerkin混合有限元方法(英文)[J];數(shù)學(xué)研究與評論;2009年05期
5 朱愛玲;姜子文;徐強(qiáng);;線性拋物型積分微分方程的擴(kuò)展混合體積元方法[J];高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào);2009年03期
6 耿加強(qiáng);畢春加;;二階雙曲方程的間斷有限體積元方法[J];煙臺大學(xué)學(xué)報(bào)(自然科學(xué)與工程版);2009年02期
7 楊青;;拋物型積分微分方程對稱修正的有限體積元方法(英文)[J];工程數(shù)學(xué)學(xué)報(bào);2008年03期
相關(guān)碩士學(xué)位論文 前3條
1 馬肖肖;橢圓問題與拋物問題的對稱修正間斷有限體積元方法[D];山東師范大學(xué);2015年
2 唐麗娜;拋物型發(fā)展方程的間斷體積元方法[D];山東師范大學(xué);2011年
3 張?bào)泱?對流擴(kuò)散方程的迎風(fēng)間斷體積元模擬[D];山東師范大學(xué);2010年
,本文編號:2433125
本文鏈接:http://sikaile.net/kejilunwen/yysx/2433125.html