天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

時(shí)間分?jǐn)?shù)階擴(kuò)散方程的微分階數(shù)識別

發(fā)布時(shí)間:2019-03-01 17:41
【摘要】:本文中,我們考慮多項(xiàng)時(shí)間分?jǐn)?shù)階擴(kuò)散方程的時(shí)間分?jǐn)?shù)階階數(shù)識別問題,即由內(nèi)部一點(diǎn)上的觀測數(shù)據(jù)去反演Caputo導(dǎo)數(shù)階數(shù)。關(guān)于正問題的數(shù)值解法,我們利用有限差分方法,給出求解正問題的隱式差分格式,通過對系數(shù)矩陣元素的分析,證明差分格式的無條件穩(wěn)定性及收斂性。關(guān)于階數(shù)識別方面,我們利用預(yù)備知識中給出了多項(xiàng)Mittag-Leffler的重要性質(zhì)去分析正問題的分離變量解在時(shí)間方向的漸近性,借助于上述漸近性分析,我們給出了階數(shù)反演的一個(gè)顯示表達(dá)式。在數(shù)值實(shí)驗(yàn)方面,我們借助前面給出的差分格式來得到觀測數(shù)據(jù),進(jìn)而去驗(yàn)證上述顯示表達(dá)式在階數(shù)識別上的有效性。
[Abstract]:In this paper, we consider the time fractional order identification of multi-term time fractional diffusion equation, that is to say, we invert the order of Caputo derivatives from the observed data at an internal point. For the numerical solution of positive problem, we use finite difference method to give implicit difference scheme to solve positive problem. By analyzing the element of coefficient matrix, we prove the unconditional stability and convergence of difference scheme. In the aspect of order recognition, we use the important properties of Mittag-Leffler to analyze the asymptotic behavior of the separated variable solution in the time direction of the positive problem, and with the aid of the above asymptotic analysis, We give a display expression of order inversion. In numerical experiments, we obtain the observed data by using the difference scheme given earlier, and then verify the validity of the above-mentioned expression in order recognition.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:O241.82

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王德金;鄭永愛;;分?jǐn)?shù)階混沌系統(tǒng)的延遲同步[J];動(dòng)力學(xué)與控制學(xué)報(bào);2010年04期

2 楊晨航,劉發(fā)旺;分?jǐn)?shù)階Relaxation-Oscillation方程的一種分?jǐn)?shù)階預(yù)估-校正方法[J];廈門大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年06期

3 王發(fā)強(qiáng);劉崇新;;分?jǐn)?shù)階臨界混沌系統(tǒng)及電路實(shí)驗(yàn)的研究[J];物理學(xué)報(bào);2006年08期

4 夏源;吳吉春;;分?jǐn)?shù)階對流——彌散方程的數(shù)值求解[J];南京大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期

5 張隆閣;;一類參數(shù)不確定混沌系統(tǒng)的分?jǐn)?shù)階自適應(yīng)同步[J];中國科技信息;2009年15期

6 陳世平;劉發(fā)旺;;一維分?jǐn)?shù)階滲透方程的數(shù)值模擬[J];高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào);2010年04期

7 辛寶貴;陳通;劉艷芹;;一類分?jǐn)?shù)階混沌金融系統(tǒng)的復(fù)雜性演化研究[J];物理學(xué)報(bào);2011年04期

8 黃睿暉;;分?jǐn)?shù)階微方程的迭代方法研究[J];長春理工大學(xué)學(xué)報(bào);2011年06期

9 蔣曉蕓,徐明瑜;分形介質(zhì)分?jǐn)?shù)階反常守恒擴(kuò)散模型及其解析解[J];山東大學(xué)學(xué)報(bào)(理學(xué)版);2003年05期

10 陳玉霞;高金峰;;一個(gè)新的分?jǐn)?shù)階混沌系統(tǒng)[J];鄭州大學(xué)學(xué)報(bào)(理學(xué)版);2009年04期

相關(guān)會(huì)議論文 前10條

1 李西成;;經(jīng)皮吸收的分?jǐn)?shù)階藥物動(dòng)力學(xué)模型[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年

2 謝勇;;分?jǐn)?shù)階模型神經(jīng)元的動(dòng)力學(xué)行為及其同步[A];第四屆全國動(dòng)力學(xué)與控制青年學(xué)者研討會(huì)論文摘要集[C];2010年

3 張碩;于永光;王亞;;帶有時(shí)滯和隨機(jī)擾動(dòng)的不確定分?jǐn)?shù)階混沌系統(tǒng)準(zhǔn)同步[A];中國力學(xué)大會(huì)——2013論文摘要集[C];2013年

4 李常品;;分?jǐn)?shù)階動(dòng)力學(xué)的若干關(guān)鍵問題及研究進(jìn)展[A];中國力學(xué)大會(huì)——2013論文摘要集[C];2013年

5 李常品;;分?jǐn)?shù)階動(dòng)力學(xué)簡介[A];第三屆海峽兩岸動(dòng)力學(xué)、振動(dòng)與控制學(xué)術(shù)會(huì)議論文摘要集[C];2013年

6 蔣曉蕓;徐明瑜;;時(shí)間依靠分?jǐn)?shù)階Schr銉dinger方程中的可動(dòng)邊界問題[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年

7 王花;;分?jǐn)?shù)階混沌系統(tǒng)的同步在圖像加密中的應(yīng)用[A];第二屆全國隨機(jī)動(dòng)力學(xué)學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年

8 王在華;;分?jǐn)?shù)階動(dòng)力系統(tǒng)的若干問題[A];第三屆全國動(dòng)力學(xué)與控制青年學(xué)者研討會(huì)論文摘要集[C];2009年

9 張碩;于永光;王莎;;帶有時(shí)滯和隨機(jī)擾動(dòng)的分?jǐn)?shù)階混沌系統(tǒng)同步[A];第十四屆全國非線性振動(dòng)暨第十一屆全國非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年

10 李西成;;一個(gè)具有糊狀區(qū)的分?jǐn)?shù)階可動(dòng)邊界問題的相似解研究[A];中國力學(xué)大會(huì)——2013論文摘要集[C];2013年

相關(guān)博士學(xué)位論文 前10條

1 陳善鎮(zhèn);兩類空間分?jǐn)?shù)階偏微分方程模型有限差分逼近的若干研究[D];山東大學(xué);2015年

2 任永強(qiáng);油藏與二氧化碳埋存問題的數(shù)值模擬與不確定性量化分析以及分?jǐn)?shù)階微分方程的數(shù)值方法[D];山東大學(xué);2015年

3 蔣敏;分?jǐn)?shù)階微分方程理論分析與應(yīng)用問題的研究[D];電子科技大學(xué);2015年

4 卜紅霞;基于分?jǐn)?shù)階傅里葉域稀疏表征的CS-SAR成像理論與算法研究[D];北京理工大學(xué);2015年

5 楊變霞;分?jǐn)?shù)階Laplace算子的譜理論及其在微分方程中的應(yīng)用[D];蘭州大學(xué);2015年

6 邵晶;幾類微分系統(tǒng)的定性理論及其應(yīng)用[D];曲阜師范大學(xué);2015年

7 方益;分?jǐn)?shù)階Yamabe問題的一些緊性結(jié)果[D];中國科學(xué)技術(shù)大學(xué);2015年

8 王國濤;幾類分?jǐn)?shù)階非線性微分方程解的存在理論及應(yīng)用[D];西安電子科技大學(xué);2014年

9 陳明華;分?jǐn)?shù)階微分方程的高階算法及理論分析[D];蘭州大學(xué);2015年

10 孟偉;基于分?jǐn)?shù)階拓展算子的灰色預(yù)測模型[D];南京航空航天大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 楚彩虹;單載波分?jǐn)?shù)階傅里葉域均衡系統(tǒng)及關(guān)鍵技術(shù)研究[D];鄭州大學(xué);2015年

2 張欣欣;Caputo型分?jǐn)?shù)階神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析[D];燕山大學(xué);2015年

3 楊晶;帶分?jǐn)?shù)階邊界條件的分?jǐn)?shù)階微分方程邊值問題[D];天津財(cái)經(jīng)大學(xué);2015年

4 王琳莉;分?jǐn)?shù)階Hamilton系統(tǒng)的運(yùn)動(dòng)方程和對稱性理論研究[D];浙江理工大學(xué);2016年

5 陳秀凱;基于移位Jacobi多項(xiàng)式求解三類變分?jǐn)?shù)階非線性微積分方程[D];燕山大學(xué);2015年

6 紀(jì)翠翠;時(shí)間分?jǐn)?shù)階偏微分方程高階數(shù)值解法[D];東南大學(xué);2015年

7 董菁菁;分?jǐn)?shù)階長短波方程的長時(shí)間行為[D];魯東大學(xué);2016年

8 崔曉玉;幾類分?jǐn)?shù)階擴(kuò)散方程中線性方程組的預(yù)處理迭代解法[D];華東師范大學(xué);2016年

9 吳亞運(yùn);幾類分?jǐn)?shù)階微分方程解的存在性研究[D];安徽大學(xué);2016年

10 曹玉童;兩類分?jǐn)?shù)階差分方程解對初值的連續(xù)依賴性[D];安徽大學(xué);2016年

,

本文編號:2432656

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2432656.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2c067***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com