基于雙線性和動(dòng)力系統(tǒng)方法的非線性發(fā)展方程的解析研究
[Abstract]:Nonlinear science is a new interdiscipline to study the commonness of nonlinear problems, and it is also a subject in the field of natural science. The nonlinear evolution equations are mainly derived from hydrodynamics, plasma physics, nonlinear optics, condensed matter physics, biology and so on. Nowadays, many methods are applied to solve nonlinear evolution equations, such as backscattering method, Backlund method, Darboux transformation method, Hirota bilinear method, Painleve analysis method, geometric bifurcation theory, homoclinic respiratory limit method and so on. In this paper, based on the theory of nonlinear evolution equation, using Hirota bilinear method, Painleve analysis method, geometric bifurcation theory and homoclinic respiratory limit method, several nonlinear evolution equations are studied by means of computer symbolic calculation, and their analytical solutions are obtained. The basic properties of the solution are further studied. The contents of this paper are as follows: (1) A nonlinear Schrodinger equation with Kerr term is studied by using the geometric bifurcation theory and the qualitative theory of dynamical systems. The equation describes the propagation process of light waves in nonlinear optical fibers. Through traveling wave transformation, we transform partial differential equation into ordinary differential equation, draw derailment diagram, distinguish the type of solution, obtain solitary wave solution and periodic solution of elliptic function. (2) secondly, we study the coupled modified Korteweg-de Vries equations. The equations describe the interaction of water waves in the process of transmission. This paper deals with coupled modified Korteweg-de Vries equations and transforms them into ordinary differential systems by twice traveling wave transformation, and makes qualitative theoretical analysis. Under different parameters, we obtain six sets of orbital diagrams. According to the properties of the orbital diagrams, we obtain solitary wave solutions and elliptic function solutions. In addition, a new elliptic function solution is obtained by using the extended elliptic function method. (3) in the end, a special water wave, deformity wave, is studied. In this paper, the (21) dimensional Kadomtsev-Petviashvili equation and (11) dimensional symmetric regular long wave equation are studied. On the basis of Hirota bilinear method, by means of symbolic calculation and homoclinic respiratory limit method, the authors obtain the solutions of the equation respiratory elements. The deformable wave solution of the equation is obtained by further analysis. To sum up, some nonlinear evolution equations, including the properties of their solutions, which are of great value in the field of optical communication and fluid mechanics, are mainly analyzed in this paper by means of analytical methods and computer symbolic calculations. The methods used in this paper can also be applied to the study of other coupling and high order nonlinear models. In addition, we hope to provide some theoretical help for the research in related fields.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:O175.29
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 斯仁道爾吉;;一個(gè)非線性發(fā)展方程的相似約化[J];內(nèi)蒙古師范大學(xué)學(xué)報(bào)(自然科學(xué)漢文版);2010年05期
2 陸啟韶 ,蔣正新;一類非線性發(fā)展方程的分叉問題[J];北京航空學(xué)院學(xué)報(bào);1985年02期
3 趙家兵;;擬非線性發(fā)展方程的B解[J];應(yīng)用數(shù)學(xué);1993年04期
4 譚紹濱,韓永前;一般非線性發(fā)展方程解的長時(shí)間行為[J];數(shù)學(xué)年刊A輯(中文版);1995年02期
5 荔煒;一類非線性發(fā)展方程解的存在性[J];寧夏大學(xué)學(xué)報(bào)(自然科學(xué)版);1996年01期
6 蔣志民;一類非線性發(fā)展方程的幾何對(duì)稱[J];黃淮學(xué)刊(自然科學(xué)版);1996年S2期
7 羅黨;一類非線性發(fā)展方程的整體解[J];天中學(xué)刊;2000年02期
8 江成順,孫同軍,崔國忠;一非線性發(fā)展方程的反問題(英文)[J];數(shù)學(xué)研究與評(píng)論;2001年01期
9 呂蓬,吳耀紅,彭武安,張輝;一類非線性發(fā)展方程的計(jì)算穩(wěn)定性[J];現(xiàn)代電力;2001年04期
10 謝福鼎,閆振亞,張鴻慶;源于Fermi-Pasta-Ulam問題的非線性發(fā)展方程的相似約化[J];應(yīng)用數(shù)學(xué)和力學(xué);2002年04期
相關(guān)會(huì)議論文 前2條
1 史小衛(wèi);梁昌洪;;非線性弧立子理論[A];1989年全國微波會(huì)議論文集(上)[C];1989年
2 朝魯;;求解非線性發(fā)展方程精確解的一個(gè)新方法[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)交叉研究進(jìn)展——2010(13)卷[C];2010年
相關(guān)博士學(xué)位論文 前10條
1 張利;幾類非線性發(fā)展方程解的研究[D];清華大學(xué);2014年
2 宋海濤;兩類非線性發(fā)展方程的動(dòng)力學(xué)行為研究[D];蘭州大學(xué);2008年
3 江杰;非線性發(fā)展方程組的整體解及漸近性態(tài)[D];復(fù)旦大學(xué);2009年
4 吳昊;非線性發(fā)展方程及方程組整體解的漸近性態(tài)[D];復(fù)旦大學(xué);2007年
5 尚嬋妤;非線性發(fā)展方程(組)整體解及其漸近性態(tài)[D];復(fù)旦大學(xué);2009年
6 郝江浩;若干非線性發(fā)展方程解的性質(zhì)的研究[D];山西大學(xué);2006年
7 任玉杰;非線性發(fā)展方程求解法的研究與數(shù)學(xué)機(jī)械化實(shí)現(xiàn)[D];大連理工大學(xué);2007年
8 康靜;非線性發(fā)展方程的勢(shì)對(duì)稱及線性化[D];西北大學(xué);2008年
9 張艷艷;非線性發(fā)展方程整體解的漸近性態(tài)及其穩(wěn)態(tài)解[D];復(fù)旦大學(xué);2010年
10 孫福芹;幾類非線性發(fā)展方程的整體解與爆破問題[D];東南大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 項(xiàng)巧敏;若干非線性發(fā)展方程解的定性性質(zhì)研究[D];南昌大學(xué);2015年
2 饒柯;基于雙線性和動(dòng)力系統(tǒng)方法的非線性發(fā)展方程的解析研究[D];北京郵電大學(xué);2015年
3 李拔萃;非線性發(fā)展方程求解中的幾種構(gòu)造方法[D];遼寧師范大學(xué);2008年
4 曾嶸;關(guān)于三個(gè)非線性發(fā)展方程解的爆破和衰減性[D];重慶大學(xué);2009年
5 張歡;基于雙線性方法的非線性發(fā)展方程的求解[D];北京郵電大學(xué);2009年
6 耿濤;若干非線性發(fā)展方程的求解研究[D];北京郵電大學(xué);2009年
7 劉若辰;1+2-維非線性發(fā)展方程的一維最優(yōu)系統(tǒng)及其對(duì)稱約化[D];西北大學(xué);2001年
8 胡偉;一類混合類型耗散非線性發(fā)展方程解的局部存在性[D];華中師范大學(xué);2008年
9 包福祥;一些非線性發(fā)展方程的研究[D];內(nèi)蒙古師范大學(xué);2008年
10 彭紅云;帶阻尼和擴(kuò)散的非線性發(fā)展方程零擴(kuò)散極限的邊界層[D];華中師范大學(xué);2012年
,本文編號(hào):2423808
本文鏈接:http://sikaile.net/kejilunwen/yysx/2423808.html